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Outline for Today

Solving HW6, Problem 1 (quickly)
Recap: Mixture Models
Representing datasets as graphs
Clustering graphs

Spectral clustering
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Recap: Mixture Models Motivation

» We wanted to fix two significant problems with K-means
clustering:

» It is a “hard” clustering method, i.e. each point gets assigned
to a single cluster and so deals badly with overlapping clusters.

» It can also do poorly in cases where the clusters have
non-spherical shapes.

» Bonus: Perhaps incorporate a bit more “statistical
modeling” into clustering.



Recap: Mixture Models

» Want to roughly imagine the case, where each cluster has a
different distribution.

» The generative model we are imagining is:

» We first choose a cluster by drawing Z ~ {1,..., K}.

» We then draw a sample from the distribution corresponding to
cluster Z.

However, we are not shown the Z values (the cluster labels).

» This is called a mixture model:

K K
flx) =) P(Z=Fkp|Z =k =) Mfz(x).
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Recap: Gaussian Mixture Models
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Recap: Clustering with a Mixture Model
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» Suppose someone handed us a mixture model. How would we
“soft” cluster our data?

» For a point = we would compute for i € {1,. %J/
n (2 “"Q
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Recap: Estimating a Mixture Model —
Expectation-Maximization

» EM is a general method for (approximately) maximizing the
(marginal) likelihood when you have missing data. We won't
get too much into the details but describe the EM algorithm
for GMMs directly.

» Roughly, we want to first “guess” the latent variables Z; and
then if we knew those we could just maximize the
(usual/complete) likelihood.

> It resembles k-means. Except instead of assigning each point
to a single cluster we “softly” assign them so they contribute
fractionally to each cluster.



Recap: Estimating a Mixture Model —
Expectation-Maximization

> We initialize the parameters (g, ix, Xk )5, randomly, and
then alternate the following two steps:

1. E-step: We compute the cluster memberships for each point

M@ (X5 prey 2
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as before.

2. M-step: Recompute the parameters:
k=

Zz IP( _k|X) ’

Y

and similarly update the covariance matrix.



Recap: Estimating a Mixture Model — EM in Action
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Graphs and Weighted Graphs

It is often convenient and useful to think about data in terms of

graphs. e

%» (Unweighted) Graphs: Just vertices and edges. Equivalent

to every edge having weight 1.

z » Weighted Graphs: Each edge, say between vertices ¢ and 7,
has weight w;;. —) O - vertices.

For us, graphs will usually be undirected (i.e. the edges do not
have an orientation), and welghts will usuaIIy be posmveu" wh are
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Graphs from Data

We are given our usual collection of data points {X1,..., X, }.
How do we build a graph from these?
Roughly:

T Nodes: These are the data points.
2. Edges/Weights: We want to connect points that are

similar. Welghts will measure Slml|a”tyn d P& "”\\ll'l MQ
-~ ., “-SMM acll
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Data Surfaces and Similarities

Why are we building graphs? Two answers:

1. Gives us a new way to think about data, and come up with
algorithms (we'll see a few examples).

2. We don’t trust the Euclidean distance. We want the geometry
of our data to inform our notion of similarity.

dean

How similar are points?
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How do we build graphs?

Three canonical ways: “'““‘:2 Tl‘ﬂtﬂd—@(
every p

> e-neighborhood graph: Conne
for which [|X; — X]| 2 < e

air of points (i, j)
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How do we build graphs?

2 ~unin d Pmmdﬁr

cal ways:

Three ca

earest neighbor graph: Connect (i, ) if either X; is one
of X;'s k-nearest neighbors or if X is one of X;'s k-nearest
neighbors.

Data points / \ kNN graph, k=5
¥ T T
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How do we build graphs?

Three canonical ways:

» Weighted Euclidean Distance graph: Connect (7,j) with

weight: A 4 O‘WAY
ecc. =0
W;; = eXp(—”Xi - XJ”%/

for some bandwEh 0. "’e‘“i'j ’Fﬂmﬂdtf

Data points epsilon-graph, epsilon=0.3
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Back to Clustering

Now that we have built a graph from our data — we can solve
many statistical learning problems (classification, regression,
clustering) using the graph. Suppose we wanted to cluster our
data (for now, into 2 clusters).

» We want to partition our graph into two pieces.

2» Hopefully?cut as few edges as pogs@ef(or minimize the

weight of ‘the edges we cut).

—Xormally, if we have a graph G, we partition the v into two

sets A and B. The cost of the partition is: -ON ver'uq
cut(A, B) > wy. / \f
= A 6.

For an unweighted graph, the cost is just the numbker of

cut. Just like in k-means - we can try to find the ‘Fva‘rtit' n, B
i.e. the one that cuts the fewest edges. K- ""0 .
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Graph Partitioning
Find best cut:
CUt(A, B) = Z Wi -
icA,jeB

Good news: There is a fast algorithm that solves this problem and
finds the best cut.

Bad news: Usually does terribly in practice. Often just splits off
“whiskers".

,\'o I Minimum cut
( ! :
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Want to encourage our clustering algorithm to find big clusters.
Y—_—
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Balanced Partitions

One alternative is to try to find a balanced cut, i.e.:

min cut(A, B).
A,B of equal size o —
- ]

» You can also imagine variants where you force both clusters to
be big (but not necessarily half the vertices) and so on.

» Turns out that this problem is difficult to solve
computationally.

> Spectral clustering algorithms will give us a way to
approximately solve such “balanced partitioning” problems.

Spectral clustering methods are basically “eigenvector-based”
methods for clustering. How do cuts and eigenvectors relate?
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Graphs as I\/Iatrice&m'ﬁ ';‘: wnne,d-tJ

» Adjacency Matrix: can just collect the Weig W,.J into & OIw,
a (symmetric) matri This is called the adjacfncy matrix.
W /7

Wy = Ukat

» Degree Matrix: The degree of a node is the sum of the
weights of the edges connected to that node. We can collect
the degrees in a diagonal matrix D, where

d
0
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Cuts as Vectors

» Cut Vectors: For every partition (A, B) of the vertices, we

can associate a vector v4p. [he entries of v4p will be +1 on
A and —1 on B.
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Cuts and Matrices

Our goal for the next few slides is to understand the following
relations:

cut(A-,B): Z /ZZW]LAB —van(j))?

he second equality:
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Cuts and Matrices

The other equality is a bit more difficult, but just algebra (we are
going to skip this). For any vector v:

v (D —W)v =vDv— vl Wo = Zv(z’)2du Z Z Wizv(i)v(j)
=D 0D Wi =Y > Wiu(i)u(j)
- % {Z D o) Wi =2 Y Wiu(i)v(j)
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The point so far

We want to find a good balanced cut. We have seen that this is
the same as finding a vector v which minimizes:

minv? (D — W)w,

(%

where v satisfies two conditions:
> Its entries are +1 and —1 (so it defines a partition).

> Its entries sum to 0 (so that the partition is balanced):

v(i) = 0.

n
=1

1
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The Graph Laplacian

The matrix:
L=D-W,

is called the Graph Laplacian.

» The graph Laplacian is a very important matrix in
understanding graphs (arises naturally in partitioning
problems, understanding random walks on graphs,
understanding flow and congestion in graphs...).

It is a symmetric, real valued matrix, so it has an
eigendecomposition. We have already seen that for any vector v:

1 n n . .
vl Ly = 5 Z Z Wij(v(i) — v(§))? >0,
i=1 j=1
so all its eigenvalues are positive.
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Spectrum of the Graph Laplacian

» All the eigenvalues of the Laplacian are positive.

» The vector v = [1,1,...,1] (you can normalize it if you
prefer) is an eigenvector of the graph Laplacian, with
eigenvalue 0. To see this we just have to check:

Lv =

> This means that all other eigenvectors v; must satisfy the
condition that:

So every other eigenvector is “balanced”.
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Basic Spectral Clustering

We want to solve the (computationally difficult) problem:

minv? (D — W)w,

v
where v satisfies two conditions:
> Its entries are +1 and —1 (so it defines a partition).
> Its entries sum to O (so that the partition is balanced):

n
> w(i) =0.
i=1
Instead we will solve the relaxation:

min v’ (D — W),

v
where v satisfies one condition:
> Its entries sum to O (so that the partition is balanced):

v(i) = 0.

n
=1

1
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Basic Spectral Clustering

Instead we will solve the relaxation:

minv? (D — W)w,

(%

where v satisfies one condition:

> Its entries sum to O (so that the partition is balanced):

)2 v(i) = 0.

The solution is just the second smallest eigenvector of the
Laplacian (easy to compute). However, we now have a problem.

And a solution:
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Algorithm

If we want to cluster our data into two clusters we will follow these
steps:
» Build a (weighted) graph on the data points (in one of three
ways).
» Construct the graph Laplacian matrix, i.e. compute the
matrix D — W,
» Find its second-smallest eigenvector vs.

» Threshold its entries to find the clusters, i.e. take
A={i:v(i) >0}, and B = {i:v(i) < 0}.
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Some Examples
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How do we cluster into more than 2 clusters?

o

(h)f.tr a4 "



