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Outline for Today

» Recap: Graphs and Clustering Graphs
» Spectral clustering

» Multi-dimensional scaling (MDS) (just an introduction)



Recap: Graphs
It is often convenient and useful to think about data in terms of
graphs.
» (Unweighted) Graphs: Just vertices and edges. Equivalent
to every edge having weight 1.
» Weighted Graphs: Each edge, say between vertices ¢ and 7,
has weight wj;.
For us, graphs will usually be undirected (i.e. the edges do not
have an orientation), and weights will usually be positive. ” d el
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Recap: From Data to Graphs

We are given our usual collection of data points {X1,..., X, }.
How do we build a graph from these? -
Roughly:

1. Nodes: These are the data points.

2. Edges/Weights: We want to connect points that are
similar. Weights will measure “similarity”.




Recap: From Data to Graphs

Three canonical ways:
¢

"f‘ ‘.XJ “g\
>ﬁNN graph: I‘F eH'heY X\ S omg x) S

k—r\eoreg* nel \)u.& or Jice —vevSa..

£ /»7 Weighted similarity graph: &“\, qe,ded
Wi = e,x?‘{«ux. —%\,7




Recap: Clustering Graphs

First Attempt: Find best cut, i.e.: °
ot - . )
ot~ min cut(A, B) = min Z Wij. B.
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Does poorly in practice.

Second Attempt: Find best balanced cut:

é :_m-m.t cut(A, B). §
A,B of equal size

Does very well in practice. However, hard to compute. Spectral
clustering is a fast, approximate way to find a balanced cut.




Recap: Graphs as Matrices

» Adjacency Matrix: We can just collect the weights W;; into
oj\/mmetrlc) matrix W This is called the adjacency matrix.
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» Degree Matrix: The degree of a node is the sum of the
weights of the edges connected to that node. We can collect
the degrees in a diagonal matrix D, where
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Recap: Cuts as Vectors

» Cut Vectors: For every partition (A, B) of the vertices, we
can associate a vector v4p. [he entries of v4p will be +1 on

A and —1 on B. V e (R'L
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Recap: The Minimum Balanced Cut

Some simple tedious algebra shows the following: CM"' \IQd‘O(

cov(es Mhr?

cut(A4, B) = %UAB(D W)vag. (b %k

So if we want to find the minimum balanced cut we can instead
solve the following problem:

argmin v’ (D — W)v
g ml —_— \, A@‘C‘O\QS
7 a

» Entries of v are all {4+1,—1} (so it is a cut vector).

» Entries of v sum to 0 (so it is balanced).



The Graph Laplacian

The matrix:

L=D-W,

o

is called the Graph Laplacian.

» The graph Laplacian is a very important matrix in
understanding graphs (arises naturally in partitioning
problems, understanding random walks on graphs,
understanding flow and congestion in graphs...).
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An example

Example graph
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Properties of the Graph Laplacian

It is a symmetric, real-valued matrix, so it has an
eigendecomposition. We have already seen that for any vector v:
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so all its elgenvalues are positive. \) ( Z (\’(.)‘ V(J))
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Intuition: Which vectors v will have large value for v Lv? V_IL\/
Which ones will have small value for v Lv?
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Spectrum of the Graph Laplacian

» All the eigenvalues of the Laplacian are positive.

» The vector v = [1,1,...,1] (you can normalize it if you
prefer) is an eigenvector of the graph Laplacian, with
eigenvalue 0. To see this we just have to check:

i
Lv:@‘\/\l) .i = é)

> This means that all other eigenvectors v; must satisfy
condition that: _ o Y
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So every other eigenvector is “balanced”.
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The point so far

We want to find a good balanced cut. We have seen that this is
the same as finding a vector v which minimizes:

minv? (D — W)v

Y
VD c— —

where v satisfies two conditions:
> Its entries are +1 and —1 (so it defines a cut).

> Its entries sum to 0 (so that the cut is balanced):

v(i) = 0.

n
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Basic Spectral Clustering
We want to solve the (computationally difficult) problem:

minv? (D — W)w,

(%
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where v satisfies two conditions: .
» Its entries are +1 and —1 (so it defines a partition). ’(_
> Its entries sum to O (so that the partition is balanced):

Zv(i) =0. .~

‘G a Instead we will solve the relaxatlon

min ’UT( Wv, —_—

Q,(D ——&’v—-)

gre v satisfies one condition:
S‘I » lts entries sum to O (so that the partition is balanced):
R) P

3& , zﬁ;v(z‘) 0. _
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Basic Spectral Clustering

Instead we will solve the relaxation:

minv? (D — W)w,

(%

where v satisfies one condition:

> Its entries sum to O (so that the partition is balanced):
n
2 v(i) =
i=1

The solution is just the second smallest eigenvector of the
Laplacian (easy to compute). However, we now have a problem.

Enbiee of V; are nod H o .
And a solution: gA : \’2_(0 70}
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Algorithm

If we want to cluster our data into two clusters we will follow these
steps:
» Build a (weighted) graph on the data points (in one of three
ways).
» Construct the graph Laplacian matrix, i.e. compute the
matrix D — W,
» Find its second-smallest eigenvector vs.

» Threshold its entries to find the clusters, i.e. take
A= {Z : Ug(i) > O}, and B = {’l, : ’Ug(i) < 0}

The second smallest eigenvector of the Laplacian has its own name
(Fiedler vector).
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How do we cluster into more than 2 clusters?
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Algorithm for clustering into k-clusters

If we want to cluster our data into k-clusters we will follow these
steps:
» Build a (weighted) graph on the data points (in one of three

ays
é(‘o) r¥onstruct the graph Laplacian matrix, i.e. compute the
matrix D — W,

Q » Find its smallest k eigenvectors {vy,vo,..., v}, put them in
a matrix V e R™*%,
z .
> Interpret the rows of V' as our data points. Run k-means on

this data to find k-clusters.

Might seem a bit mysterious: Why is this better than running
k-means on the original data?
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The Spectral Embedding

Just some intuition through pictures:
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Key point: The spectral embedding (i.e. using the eigenvectors
of the Laplacian as the data points) tends to separate clusters very
well. k-means on the embedding performs much better than

k-means on the original data.
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our graph has three separate connected components:

0

Why does this happen?

Let us first consider a simple case for clustering graphs. Suppose
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What does the adjacency matrix look like? What about the

Laplacian?
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Clustering disconnected graphs

So we have just argued that the Laplacian of our disconne¥d
graph looks like this:
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Clustering disconnected graphs

If our eigenvectors are just indicator vectors for the different

clusters:
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Then k-means will work well! &'
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Clustering in more realistic cases

In most real data analysis the graph we build will not neatly
separate into the k-clusters that we want.

» The eigenvectors of a matrix (under some natural conditions)
do not change much when you change the matrix by a small
amount.

» So if our graph approximately looks like a k-piece
disconnected graph (i.e. few edges between the pieces, and
hopefully lots of edges within the pieces) then spectral
clustering will work well.
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Spectral clustering v/s k-means

original data (with ground truth) original data (with kmeans clustering)
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» If clusters are (well-separated) blobs: k-means will do well but
so will spectral clustering.

» |If clusters are dense but have strange shapes then spectral
clustering will typically do much better.
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Spectral Clustering in Practice

» People often use the normalized Laplacian instead of the
graph Laplacian.

» The normalized Laplacian divides each entry of the Laplacian
by the square root of the degrees of the two corresponding

nodes, i.e.: ™ orl a!\—ﬁ B
_ n—1/2 —1/2 /
Lnormalized =D / LD / . wf" nse if\ —H}\f

So,
. L(z, 7
Lnormalized(%]) = \/(de
The normalized Laplacian has many of the same properties as

the graph Laplacian but tends to give better clusters in
practice.

> The rest of the algorithm is identical (compute the bottom k
eigenvectors and run k-means on them).
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Spectral Clustering in Practice

algorithm now hagmore tuning parameters than k-means.

The numberof clusters k: In the ideal case, we know we
shouldehave k eigenvalues close to 0, and the k£ + 1 eigenvalue
sgo d be large. So in practice we often look for the first large
gap/in the eigenvalues. Roughly,

c

L -1

k* = arg max Ak — Akt

—_—
The choice of the similarity graph: Need to choose

between k—NE similarity, g-neighborhood and weighted. In
practice, thegk-NN_graphpoften works well (and is a good
starting point). It also giVes us a sparse graph (which is useful
computationally).

The choice of & in the k-NN graph: Again, a very hard
question to answer. Often the heuristic is to make sure k is

large enou as very few

N

disconnected components. (If the graph has many
disconnected components then spectral clustering just returns
some subset of those components.)

—
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Back to data visualization and PCA

X=UxDxV?T.

A curious fact:

» Recall, that in order to visualize data using PCA, all we
needed we the principal component scores (i.e. the things in
the matrix U x D). Why?

» Suppose instead of giving you the matrix X (i.e. the data) |
only gave you the matrix X7 X. Could you still “visualize” the
data?

» How about if | gave you the matrix X X717
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The matrix X X1

» The matrix X X7 is called the inner-product matrix. Why?

» QOur curious fact in words: We can visualize the data even
without having the original data. Using PCA (or an
eigendecomposition) we can go from similarities to a
meaningful point cloud.
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