Neural Networks

Siva Balakrishnan
Data Mining: 36-462/36-662

April 18th, 2019

Outline for Today

» Recap

» Feedforward Neural Nets Basics

Recap: Dealing with Data

Lots of considerations in analyzing data:
1. Create train, validation, test folds

22. Useful to understand your data (make plots, make conditional
plots, etc.)

3. Understand the task you want to accomplish with data, and
constraints (test time budget, train time budget)

4. Fix/assess outliers and missing-data <—
?5. Think carefully about featurization

[4

Recap: Possible Actions

Once you fit a model there are several possible next steps:
» Get more data
» Make more/better features
» Use a more flexible model
» Use a more regularized/less flexible model

Need to use train and validation errors, and possibly a more
detailed error analysis (look at individual points) to decide what
the next steps are.

. Quick and dirty (fit a couple of models). Under

Recap: Model Tuning

. Train-validation-test splits &—

Featurization —

rates (fit naive predictors), understand what

should be using, know that you can trade-off thing
precision and recall in many predictors.

Diagnose bias/variance problems (use sample-size curves,
model-complexity curves, regularization curves, compare
different models)

. Fix bias/variance problems (different set of fixes in each case).

lterate 2,4,5. Think carefully about how to not get bogged

down by the tyranny of tuning parameters (use smaller data
sets, be parsimonious in choices to try out).

Error analysis (diagnose points on which you are predicting

poorly, are they outliers? Can you design useful features for
them?).

Maybe you need more training data but this should be last

resort.

Today: Neural Networks

The intent of today's lecture (and some of next week) is to
introduce you to ideas from deep learning.

This is generally a large and exciting topic (there are several
classes around campus that are entirely devoted to it).

The hope is that you'll become comfortable with some of the
ideas, goals, and language, so that you can

» Recognize when it is potentially appropriate
» Discuss the basic ideas

» More easily learn about it when you need to

Getting started

Start by considering linear regression. We observe a bunch of
features x € RP and outcomes y € R. We model them by a linear
model:

= F@) = '3,

We find (3 by solving the following optimization problem:
=
n
arg/];nin Y — XﬁH% = arg;nin Z(yz — :UZTB)2
i=1

This works great when our regression function E(Y|X = z) is
approximately linear. What if it's not?

Beyond linear regression

We've seen some approaches: we can move to a more complicated
f function: random forests, bagging, SVM.

Suppose we want to improve linear regression instead. For many
years, this problem was approached by engineering functions ¢;(z)
to provide custom features, and then fitting a linear model (ms_'
was also how we thought of kernel SVMs): X - -

y: i'?)(l X\’E’(}i’jx"

In image recognition, edge detection, corner detection, keypoints

(SIFT).

Ca——

%This is incredibly expensive! It lead to improvements, but at great
cost. It's also very difficult to scale to new problems.

Maybe | can do it for handwriting and voice dictation, but what
about identifying facial expressions, translating languages,
colorizing images, locating cats, image captioning, etc. 8

Beyond linear regression

Neural n&tworks try to construct these ¢ from the data. y
YL(W'O) 2 8 - "Lalure en “‘\Qe’::g
(x; ®) T a2 B ubd regriion

20 y=9(@;0) (B> ¢i(x:0)5; Prrathelers .
(— j=1
L —

If we canl estimate these ¢;(x;6) well, then we've “replaced”

feature engineering!

'Y

What should we use for ¢;(z;0)? We like linear functions, what if
we define ¢;(z;0) = 210;7? N . T
— T (* Yen GM!UQO' Raduve " i 6) K-
Why is this a bad Jlea? o‘rxﬂ . 'f@’f
— (By+ O+ 8- ! am - ‘
X, (W' YV YTy)F. 9} < | < c(aggt({er
. S on hese .

&l

Beyond linear regression

Ok, so we can't use a linear function. What' s non- linear but similar
to linear regression? noh- linear

g '>l Iy ,l,jgjxe <XT
EGmple non-lintar

Common choices for g:
L, no longer (\MZM

moco' non- lmeamlr =
J() T exp @ L 42,,\ oks
jS;(ured\y

10

Kechﬁed mef U'\'tl' (QCLU)

| Z ., Mox %0 GTx}
3&) 7
~) Cmgg "“\VQS\\'G\A \-‘“ﬂ

Jurn on

So far

So now we have a model of the form

/

3

w;p(x; 05, ¢;)

J
—

<
|
.
I
—_

~

3

w; max{0,z0; + c;}

RQLV non ~linea .

These max{0,270; + c¢;} provide simple features of = to use in
your final regression model.

.
I
—_

11

A very simple example

Suppose we want to learn the XOR function, i.e. we have two
binary features X, X5 and:

{0 if (X1+ X2)=0o0r2,]
y:

1 otherwise.

No good linear separator. Easy to engineer features so

classifier works: .
G
E T
>~

_.>(Xy QJ‘(’ : \y\o,‘\imw do&i\‘r
|
\

°

@ 12

Representing Classifiers/Regressors as Networks

It will be convenient for us to think about classifiers/regressors by
a network representation. So we can then make our classifiers more
interesting just by playing with the network.

e ISR)

Y yector

13

Logistic Regression as a Network

It will be convenient for us to think about classifiers/regressors by
a network representation. So we can then make our classifiers more
interesting just by playing with the network.

‘ mowl'

¥y k

e o,xr(—

y

|

)

14

—Hidden@\leural Network
v o %

More complexity

“4 NNs £~ e‘%jm i3 “P“'e,v

To get mor comple featyres, we canJus Q se more

layers of feature RO ch}y,nﬂn mea unction of a linear
transformat; e pPhevious.

o~

This is the basic idea of feed-forward neural networks or multilayer
perceptrons

“learn non—[i neaviires 7

(9 pnf,cchon Purfm’r

16

Feed-forward neural networks

Cj one "‘fgu% dﬂ; ex,;. < is éwr:{;o.q}gﬁ)

his is a very flexible structtre. It was shown (1 that
feed-forward networks with a single hidden layer can approxima
functions to any desired precision, given enough hidden units! w\&

@, ex E
Of course, this doesn't say that you can find such a network using
data. .. W 4

In practice, it's hard to find such a single layer network. The
abstraction of having multiple layers makes this simpler.

17

Lots of choices

D D O O (o4 hidden (a\’e_rs
25 # neuront (n
’q:pr wu;u-i\)
on- linean
‘tﬁf :eeol Mf‘
) be "1

- (& @mckon
N jwf‘rb'm dwces

Ruliy-cnnneched

18

Outputs

We can stick a bunch of final functions on top to get different
outputs. Let h be the output of the final layer.

——> » Continuous outcome: just use a wz ;é b linear function!

—) > Binary outcome: Just use logistic
R %)

1+e wT

—) » Multiple categories: use multinomial-logistic, i.e. we produce

K outputs of the form:
—

Py=0 o [hidden s

j Lodure e%mee"j

So we have a model...

We still need to consider:
1. How do we fit this model to data? Often huge number of
parameters, and huge number of training examples.
2. They seem like very flexible models — how do we regularize
them well?
3. How do we make the various architecture choices?

20

Loss Functions
The basic idea should be familiar.

then try to find weights that make our_loss small.

» We use a loss function to measure how well we are fitting, and}

or continuous outputs, we might lodf
For binary or multiple category outputs, we might look at the log
likelihood of y;:

log (1 tors) v =1

Logistic: —wTh
log | 7 omor) ¥i=0

- - ew:g;h

Multinomial: log T

Zjewj

We can generally design other loss functions for interesting
problems.

N V. N N

21

Gradient descent

The neural network problem is non-convex and has many local
minima and saddle points. The solution has no closed form.

The most common approach to this optimization problem is a
variation of gradient descent.

Suppose we want to minimize F'(x), x € RP. We could compute
the gradient at the current point, z (%)

VE(®) — <8F 8F>

oz’ " Oz,

x=x(k)

22

Gradient descent

VF@%U::<aF 8F>

oz’ Oz,

x=x(F)

The gradient points in the local direction of steepest increase. To
walk down hill, we would take a step in the opposite direction:

2D — 2B _ g (2)

The step size, 1, is also called the learning rate. Picking a good
value of 7 is important and there are a variety of approaches.

23

Gradient descent

Of course, actually computing the gradient is expensive! Our F' is
the loss, possibly (ignoring regularization):

n

> (i — G(s))?

=1

The first sum might have 10,000,000 terms! The ¥ function might
have millions of parameters!

We will discuss a bit more about tricks for optimizing and
regularizing neural networks in the next lecture but for now let us
just understand one simple but powerful idea.

24

Computing gradients

only -hlcenwny ; Buckprpagation

Are you looking forward to computing the'gradient of .
Slv-7% vtk 14 e ’”\mok
= retwor k

with respect to each of the parameters? For instance, with a
2-hidden layer network we would have to find the derivative of:

J(z)=w'y (W(Q)g (W(”az + bl) n bg) b
— w! max {O, W2 max {O, Wy + bl} + bQ} +b

with respect to all the elements of W) and W(2)?

25

Backpropagation

We can write out all of our computations as a graph (because the
network is nice) and then work our way backwards using the chain
rule.

0z 0z 0y Oz
Ow Oy Ox Ow
=W (y)g'(z)f'(w)

26

Backpropagation in an Example

27

Where are we so far?

We introduced neural networks as a non-linear model for
classification /regression.

Discussed their motivation (flexible models, try to automate
——

feature engineering).

How to understand the network representation of a predictor,
and how to construct deep neural networks.

Loss functions for measuring how well we are doing.

Backpropogation for trying to fit the network parameters to
data.

28

