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Recap: Loss Function in Classification

» Usually we use 0/1 loss. Most classification problems are not
naturally symmetric.

» Most generally, can specify a (K x K) matrix of losses and
calculate the Bayes classifier.
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» Important practical knob to be aware of, and to think carefully

about.



Recap: Classification v/s Regression

» Binary Classification is closely related to regression. If
encode, y € {0, T} then:

E[y|X =a] =P(y= 11X =),

So to classify well in the binary case, we need to know
whether the regression function is above 1/2 or below
» Using squared loss and fitting a linear model (for insta
) .a
still a bad idea.

we

1/2.

nce) is

O e e — o b HE - R - N I = 4 - - 4 - O oo e = b B R S - B N < - - -
= T = T
> © = o
C o . o
Wi 5 S 5 S
“ 2 < Z <
&= F o T o
© ©
a9 o | - o o |
o o __— o o
a __— a
'—/' ‘l T T T T T T T T T T T
A Qg 0 500 1000 1500 2000 2500 0 500 1000 1500 2000 2500
0 no" MoJ:e Balance Balance
Senge_

» The relationship between classification and regression
completely breaks down in the multi-class setting.




Recap: Generative v/s Discriminative

» In the binary case, the Bayes classifier is:

fBayes(z) = I[(P(y = 1|X =2) > 1/2).
» Suggests two different approaches to\classification:
Discriminative A+ Generatlve A
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Discriminative Classifiers
How should we think about modeling P(Y = k| X = z) directly?

If we only had a few x values, we could directly look at Y
conditional on each one:

‘ Default=No Default=VYes

Student=No 6350 206
Student=Yes 2817 127 _
w"ik"'s \
7 bet cosed
P(Default|Student) 123 -\ wf
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P(Default|Not Student) - 206
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Discriminative Classifiers
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If we have many values of z, we can't directly look at
P(Y = k| X = x) for each x. We need some way to pool

information from similar points.
AR

This should remind you of regression.



How should we model P(Y = 1|X = z) for a continuous X?
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We can start to see that most |nd|V|dua|s do not default and that
large balance seems to be related to default



This is a conditional density plot. We look at the probability of
default within each bin.
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This is a (binned) plot of P(Y = 1|X = x)! This is clearly a
natural way to think about classification. If | know which bin you
are in (X), | can look at how likely you are to default.

How should | build a model of this?



We could try a linear model:
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Are you happy?
» Predictions outside [0, 1] don't really make sense.
» Interpretations of 3 are strange.

» Least squares doesn't really make sense for estimation.



Linear regression doesn’'t work very well for estimating
P(Y =1|X =), since
» It doesn’'t make sense to extrapolate outside of [0, 1].

» Least squares is an odd way to approximate probabilities.

We still like the idea of forming linear functions of our data,
Bo + 181 (who doesn't?).

We want a way to squish that linear function back into [0, 1]:

A

P(Y = 1|X = z) = squish(fy + B171) g w‘gh
e
—+n




Logistic regression

|Q?-—otus

In logistic regression, we model

P(Y = 1|X = z)
P(Y = 0|X = z)

log { b =80+ A"

for some unknown 5y € R, 5 € RP, which we will estimate directly

Note that P(Y =0|X =2)=1—- P(Y = 1|X = z), and

So our model is equivalent to ‘ "~
(+ 6*‘)2 Fa-k (&(Xj

P(Y =1|X =2) =
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Inverse logit curve (expit)
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logit ! (2) = expit(z) = T+ or — 1o

The function

is our desired “squishing” function, transforming real numbers into
[0, 1].
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Logistic regression and the Default data

The logistic fit gives a much more reasonable estimate of
PlY =1|X = x)!
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Logistic regression and the Default data
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Logistic regression: Estimated probabilities

Once we have estimated BB, 31, we can estimate conditonal
probabilities:

P(Y = 1|X = 2) = exp(Bo + Prz)
1+ exp(go + 31513)

For a balance of $1000 or $2000,

exp(Bo + B1 - 1000)

1 + exp(Boy + B - 1000)
exp(Bo + B1 - 2000)

1 + exp(Bo + B - 2000)

= 0.00576

P(1000) =

P(2000) = = 0.586
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Interpretation of logistic regression coefficients

We start to see that the coefficients are interpretable.

We have modeled

P(Y = 1|X = z)
PY =0|X =2x)

log = Bo + B111

The left side, log igzégig is called the log-odds that Y = 1.
This means that the odds that Y =1,

PY=1X=2) X A §

PY =0|X =) F (%‘“ )31’)(4

Incre/qsing x1 by one unit increases the estimated odds that Y =1
by 1.
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Multiple variables

We can extend this idea to multiple variables, just like linear
regression.

For variables 1, ..., z,, we model

P(Y = 1|X = 2)
P(Y =0|X = )

log = Po + frx1+ -+ + Bpap

=z
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Classification by logistic regression

Suppose that we fit a logistic regression, estimating Bo, B How do
we classify?

Recall that our optimal classifier chooses

argmax P(Y = k| X = x)
k

to minimize 0-1 loss.

Logistic regression gives us an estimate of P(Y = k|X = x)! We
can just pick the category with the biggest value.

1+exp(zT B)

; 1 if =8 S g5
0 otherwise
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Classification by logistic regression

Inverse logit curve (expit)

expit(x)
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Remember that logit and expit are monotonically increasing! This
gives us a much simpler rule!

1+ exp(a” )
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eXP(xTﬁ) 205 o XTF >/ O

21



Classification by logistic regression

This gives our final decision rule

{1 ifa:TB>0

0 otherwise

Therefore the decision boundary between classes 1 and 0 is the set
of all x € R? such that

TN
x g =0
This is a point in R! or a line in RQ.S)
Linear cl &SS&Q(\ |

:DQ,C,(:S{Q(\ [oo\mm s lneas.
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Estimating logistic regression coefficients

To actually estimate the B we just use maximum likelihood!

Suppose that we are given an i.i.d. sample (z;,y;), i =1,...n.
Here y; denotes the class € {0, 1} of the ith observation. Then

L(B)=]]P(C =wylX =)
i=1
the likelihood of these n observations, so the log likelihood is
((B) =) logP(C =y;| X = )
i=1

We just plug in our logistic model for these probabilities and
optimize.
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The, log likelihood can be written as g C {O‘
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The coefficients are estimated by maximizing the likelihood,

n

A: 7 Ti—l 1 X T@‘
§ = argmax ;{y (8";) — log (1 + exp(87a)) }
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The 0/1 loss

» A natural question — why don’t we just minimize the 0/1 loss
on the training data?

» For the logistic model: L\/j or [ane _HML"
. mak e$ J?e,wesjr wg-‘alﬁ&

B = argmin Z]I 2y; — 1) - (67x;) < 0)
o BERP

» Minimizing this function is generally computationally hard.
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Convexity, loss minimization

(will not be on any HW /exam)

5
v

The maximum likelihood problem in logistic regression is an
example of a concave, maximization problem.

0.5
-10 L0

» Cannot solve in closed form (unlike linear regression)

» Can solve using iterative schemes (like gradient ascent)
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Multinomial Logistic Regression

We can generalize logistic regression to K classes, leveraging the

same ideas. P
¢ R
We now have vectors (31, ..., Bk, and define
xTBk

_Z] lezﬁj

It turns out that the S, are not uniquely identifiable, you can
eliminate one of them.

These probabilities are given by the softmax function, which we
will see again in neural nets.
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Logistic Regression with Linearly Separable Data

G(ie) ?er&‘gd linesy classli

> If the data is linearly separable (?) then weights go to oo and
can overfit! \

» 1D Example:
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Regularization

» Will return to this in more detail. c— f/\ " F "ﬁ'—
» LASSO Logistic:
Ocj M‘Zbﬁ f ai ()(TF) — tg(j+e><r(€ﬁ))
1=\
idge Logistic: B () ’(/3";

» Elastic Net Logistic:
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