Discriminative Classification Classification 2: Logistic Regression and Practical Aspects of Classification

Siva Balakrishnan Data Mining: 36-462/36-662

January 22, 2018

ISL 4.3 (Logistic Regression), K&J Chapter 11 (Practical Aspects)

Recap: Setup

- X; ER Y; ER-regression ▶ Supervised Learning $\{(x_1, y_1), \ldots, (x_n, y_n)\} \sim \mathcal{P}_{xy}$.
- ▶ Hypothetical if we knew \mathcal{P}_{xy} . What is the best way to
- predict y from x?
- Regression
- → use conditional expectation
- f(x) = E y x=2
 - ► How good are these predictors?
- Regression Unpredictable error

Classification

→ pick most likely label:

$$f(x) = arg max P(Y=j X=x)$$
 $j \in \{0, ..., K-1\}$
Bayes
Classification
Classifier

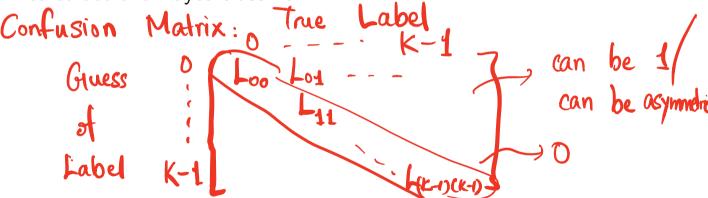
Bayes emor/ Bayes nisk

Recap: Loss Function in Classification

• Usually we use 0/1 loss. Most classification problems are not naturally symmetric.

▶ Most generally, can specify a $(K \times K)$ matrix of losses and

calculate the Bayes classifier.



Important practical knob to be aware of, and to think carefully about.

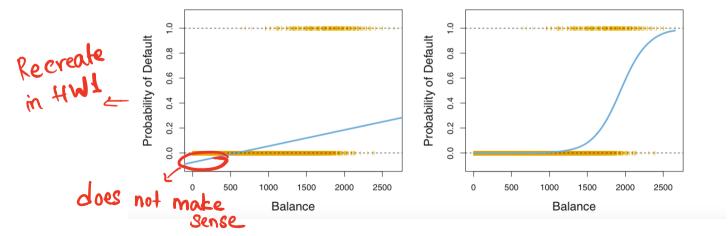
Recap: Classification v/s Regression

▶ Binary Classification is closely related to regression. If we encode, $y \in \{0,1\}$ then:

$$\mathbb{E}[y|X=x] = \mathbb{P}(y=1|X=x).$$

So to classify well in the binary case, we need to know whether the regression function is above 1/2 or below 1/2.

Using squared loss and fitting a linear model (for instance) is still a bad idea.



► The relationship between classification and regression completely breaks down in the multi-class setting.

Recap: Generative v/s Discriminative

▶ In the binary case, the Bayes classifier is:

Discriminative

$$f_{\mathsf{Bayes}}(x) = \mathbb{I}(\mathbb{P}(y=1|X=x) \geq 1/2).$$

Suggests two different approaches to classification:

1. Model
$$P(y=1|x=z)$$

not positing model for Xly

$$P(x=x) \neq 0$$
Expare to
$$P(x=x|y=0)P(y=0)$$

2. Generate samples since we have modeled 2.

3. In some cases, more natural for model how data came about

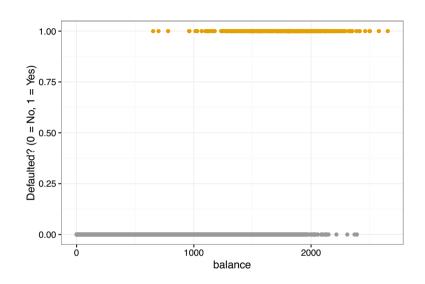
Discriminative Classifiers

How should we think about modeling $\mathbb{P}(Y=k|X=x)$ directly?

If we only had a few x values, we could directly look at Y conditional on each one:

	$Default {=} No$	Default=Yes	
Student=No	6850	206	
Student=Yes	2817	127	
			what is
			what is best classified
		127	
P(Defau	It Student) =		- Always pedict
	,	2817+127	redict
P(Default Not)	ot Student) 🚤	206	(
` '	, –		"no default"
		206+6850	

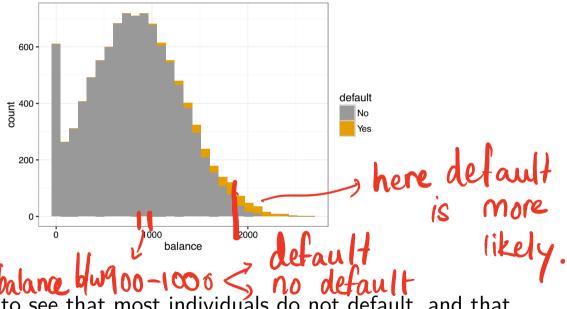
Discriminative Classifiers



If we have many values of x, we can't directly look at P(Y=k|X=x) for each x. We need some way to pool information from *similar* points.

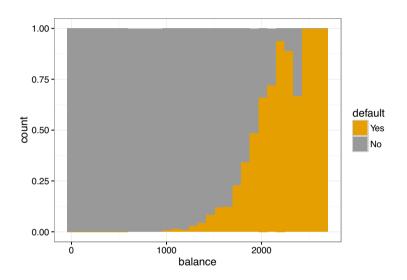
This should remind you of regression.

How should we model P(Y = 1 | X = x) for a continuous X?



We can start to see that most individuals do not default, and that large balance seems to be related to default.

This is a conditional density plot. We look at the *probability of default* within each bin.

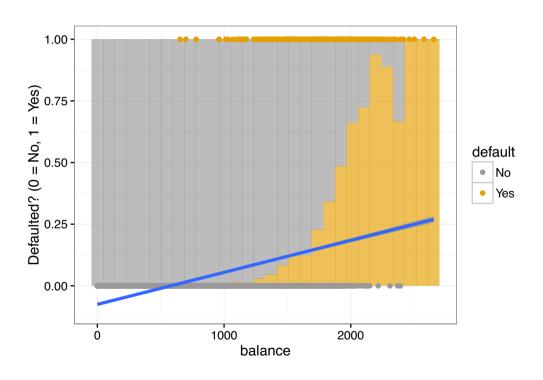


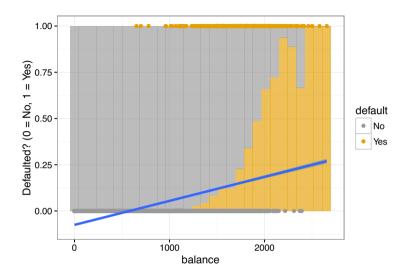
This is a (binned) plot of P(Y=1|X=x)! This is clearly a natural way to think about classification. If I know which bin you are in (X), I can look at how likely you are to default.

How should I build a model of this?

We could try a linear model:

$$Y = \beta_0 + \beta_1 x$$





Are you happy?

- ightharpoonup Predictions outside [0,1] don't really make sense.
- ▶ Interpretations of β are strange.
- ▶ Least squares doesn't really make sense for estimation.

Linear regression doesn't work very well for estimating P(Y=1|X=x), since

- ▶ It doesn't make sense to extrapolate outside of [0,1].
- Least squares is an odd way to approximate probabilities.

We still like the idea of forming linear functions of our data, $\beta_0 + x_1\beta_1$ (who doesn't?).

We want a way to squish that linear function back into [0,1]:



Logistic regression

In logistic regression, we model

$$\log \left\{ \frac{P(Y = 1 | X = x)}{P(Y = 0 | X = x)} \right\} = \beta_0 + \beta^T x$$

for some unknown $\beta_0 \in \mathbb{R}$, $\beta \in \mathbb{R}^p$, which we will estimate directly

Note that
$$P(Y = 0|X = x) = 1 - P(Y = 1|X = x)$$
, and

$$\log\left(\frac{p}{1-p}\right) = \beta_0 + \beta^T x \iff P = \exp\left\{\beta_0 + \beta^T x\right\}$$

$$\Leftrightarrow P = \exp\left\{\beta_0 + \beta^T x\right\}$$
our model is equivalent to
$$P(Y = 1|X = x) = \frac{\exp(\beta_0 + \beta^T x)}{1 + \exp(\beta_0 + \beta^T x)}$$

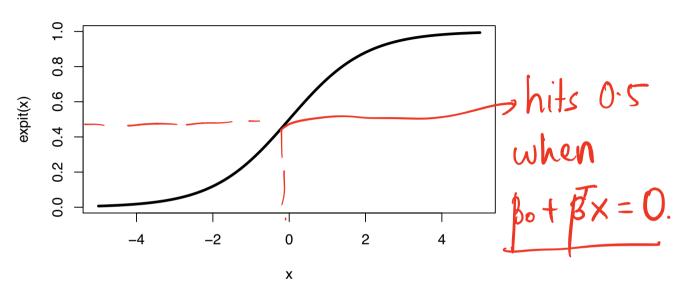
$$\Leftrightarrow$$

$$\Leftrightarrow$$

So our model is equivalent to

$$P(Y=1|X=x) = \frac{\exp(\beta_0 + \beta^T x)}{1 + \exp(\beta_0 + \beta^T x)}$$

Inverse logit curve (expit)



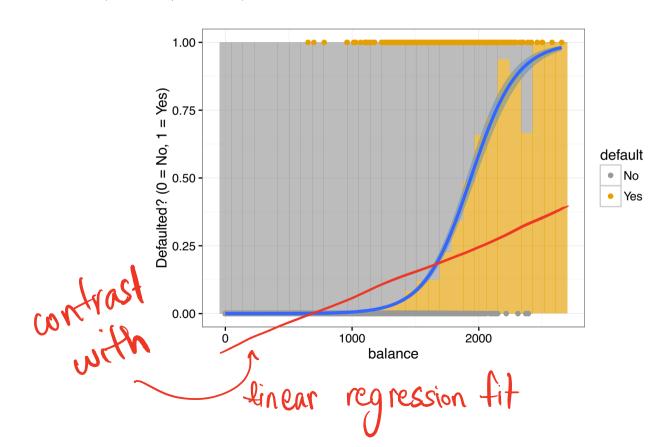
The function

$$logit^{-1}(z) = expit(z) = \frac{e^z}{1 + e^z} = \frac{1}{1 + e^{-z}}$$

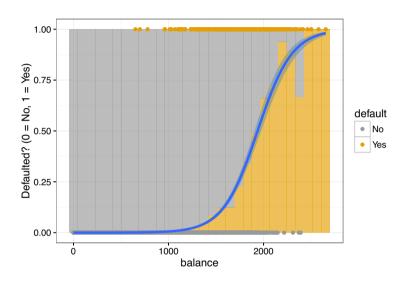
is our desired "squishing" function, transforming real numbers into $\left[0,1\right]$.

Logistic regression and the Default data

The logistic fit gives a much more reasonable estimate of P(Y=1|X=x)!



Logistic regression and the Default data



$$\log \frac{P(\text{Default}|\text{Balance})}{1 - P(\text{Default}|\text{Balance})} = \beta_0 + \beta_1 \cdot \text{Balance}$$

Logistic regression: Estimated probabilities

Once we have estimated $\widehat{\beta_0}, \widehat{\beta}_1$, we can estimate conditional probabilities:

$$P(Y = 1|X = x) = \frac{\exp(\widehat{\beta}_0 + \widehat{\beta}_1 x)}{1 + \exp(\widehat{\beta}_0 + \widehat{\beta}_1 x)}$$

For a balance of \$1000 or \$2000,

$$\widehat{p}(1000) = \frac{\exp(\widehat{\beta}_0 + \widehat{\beta}_1 \cdot 1000)}{1 + \exp(\widehat{\beta}_0 + \widehat{\beta}_1 \cdot 1000)} = 0.00576$$

$$\widehat{p}(2000) = \frac{\exp(\widehat{\beta}_0 + \widehat{\beta}_1 \cdot 2000)}{1 + \exp(\widehat{\beta}_0 + \widehat{\beta}_1 \cdot 2000)} = 0.586$$

Interpretation of logistic regression coefficients

We start to see that the coefficients are *interpretable*.

We have modeled

$$\log \frac{P(Y=1|X=x)}{P(Y=0|X=x)} = \beta_0 + \beta_1 x_1$$

The left side, $\log \frac{P(Y=1|X=x)}{P(Y=0|X=x)}$, is called the *log-odds* that Y=1.

This means that the odds that Y = 1,

$$\frac{P(Y=1|X=x)}{P(Y=0|X=x)} = \bigvee \left\{ \begin{cases} \beta_0 + \beta_1 \chi_1 \end{cases} \right\}$$

Increasing x_1 by one unit increases the estimated odds that Y=1 by e^{β_1} .

Multiple variables

We can extend this idea to multiple variables, just like linear regression.

For variables x_1, \ldots, x_p , we model

$$\log \frac{P(Y=1|X=x)}{P(Y=0|X=x)} = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p$$

$$= x^T \beta$$

$$\Rightarrow \text{ hide } \beta_0, \text{ imagine new covariate}$$

$$X_0 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

Classification by logistic regression

Suppose that we fit a logistic regression, estimating $\widehat{\beta}_0, \widehat{\beta}$. How do we classify?

Recall that our optimal classifier chooses

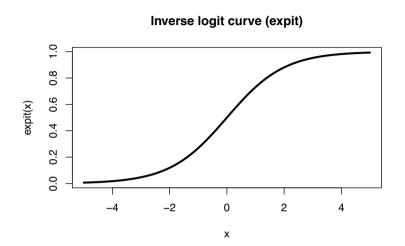
$$\operatorname*{argmax}_{k} P(Y = k | X = x)$$

to minimize 0-1 loss.

Logistic regression gives us an estimate of P(Y = k | X = x)! We can just pick the category with the biggest value.

$$\widehat{f}(x) = \begin{cases} 1 & \text{if } \frac{\exp(x^T \widehat{\beta})}{1 + \exp(x^T \widehat{\beta})} > 0.5\\ 0 & \text{otherwise} \end{cases}$$

Classification by logistic regression



Remember that logit and expit are monotonically increasing! This gives us a much simpler rule!

$$\frac{\exp(x^T\widehat{\beta})}{1 + \exp(x^T\widehat{\beta})} > 0.5 \quad \Leftrightarrow \quad \mathbf{X}^{\mathsf{T}}\widehat{\beta} \quad \mathbf{X}$$

Classification by logistic regression

This gives our final decision rule

$$\widehat{f}(x) = \begin{cases} 1 & \text{if } x^T \widehat{\beta} > 0 \\ 0 & \text{otherwise} \end{cases}$$

Therefore the decision boundary between classes 1 and 0 is the set of all $x \in \mathbb{R}^p$ such that

$$x^{\dagger}\beta = 0$$
.

This is a point in \mathbb{R}^1 or a line in \mathbb{R}^2 .

Decision boundary is linear.

Estimating logistic regression coefficients

To actually estimate the $\widehat{\beta}$, we just use maximum likelihood!

Suppose that we are given an i.i.d. sample (x_i, y_i) , i = 1, ... n. Here y_i denotes the class $\in \{0, 1\}$ of the ith observation. Then

$$\mathcal{L}(\beta) = \prod_{i=1}^{n} P(C = y_i | X = x_i)$$

the likelihood of these n observations, so the log likelihood is

$$\ell(\beta) = \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

We just plug in our logistic model for these probabilities and optimize.

conditional

The log likelihood can be written as

he log likelihood can be written as
$$\ell(\beta) = \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

$$= \sum_{i=1}^{n} \log P(C = y_i | X = x_i)$$

The coefficients are estimated by maximizing the likelihood,

$$\widehat{\beta} = \underset{\beta \in \mathbb{R}^p}{\operatorname{argmax}} \sum_{i=1}^n \left\{ y_i \cdot (\beta^T x_i) - \log \left(1 + \exp(\beta^T x_i) \right) \right\}$$

The 0/1 loss

- \triangleright A natural question why don't we just minimize the 0/1 loss on the training data?
- ► For the logistic model:

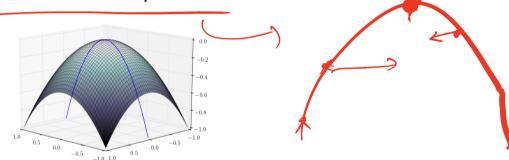
ogistic model: find hyperplane that makes tewest mistakes
$$\widehat{\beta} = \operatorname*{argmin}_{\beta \in \mathbb{R}^p} \sum_{i=1}^n \mathbb{I}((2y_i-1) \cdot (\beta^T x_i) < 0)$$

Minimizing this function is generally computationally hard.

Convexity, loss minimization

(will not be on any HW/exam)

The maximum likelihood problem in logistic regression is an example of a *concave*, *maximization problem*.



- ► Cannot solve in closed form (unlike linear regression)
- Can solve using iterative schemes (like gradient ascent)

Multinomial Logistic Regression

We can generalize logistic regression to K classes, leveraging the same ideas.

We now have vectors β_1, \ldots, β_K , and define

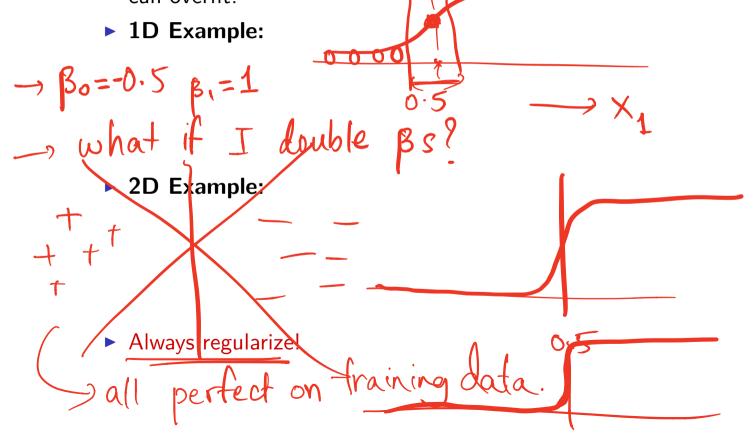
$$\mathbb{P}(Y = k | X = x) = \frac{e^{x_i^T \beta_k}}{\sum_{i=1}^K e^{x_i^T \beta_i}}$$

It turns out that the β_k are not uniquely identifiable, you can eliminate one of them.

These probabilities are given by the *softmax* function, which we will see again in neural nets.

Logistic Regression with Linearly Separable Data (ie) perfect linear classing

If the data is linearly separable (?) then weights go to ∞ and can overfit!



Regularization

▶ Will return to this in more detail.

► LASSO Logistic:

ary max
$$\sum_{i=1}^{n} y_i(x_i^T \beta) - \log(1 + \exp(\beta^T x_i))$$

Ridge Logistic:

$$-31\beta12$$

► Elastic Net Logistic:

$$-\left(2||\beta||_{1}+2||\beta||_{2}^{2}\right)$$