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Chapter 6 of ISL (for regularization), 4.4 of ISL (LDA)
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Recap: Regularization Basics

» Regularization broadly is a coIIection of tools to reduce
overfitting.

> Overfitting roughly: -F «F E( ﬁ\»
M/@ 3%‘!)((—[1% \0&) but 0;')/9

» Complex models might fit the training data well but may not
generalize (unless we have large amounts of training data).

» One solution (there are many others) is to trade-off fit for
complexity, i.e. find a solution that has low-complexity but
fits the training data reasonably well.



Recap: Regularization Continued

Favoring less complex models can have another benefit

beyond reducing overfitting.

Less complex models might bm Particularly,
sparse models which use few features can in some cases be
= .

€asy to Interpret.

This suggests a different way to regularize models — to find
models that fit the training data but only use a small number
of features.

The sparsity viewpoint motivates lots of different ideas — best
subset fitting, greedily introducing features (forward stepwise
algorithms), using regularizers that encourage sparsity. These
models can also generalize well.



Recap: Two Popular Regularizers

» Ridge Regularization:

/L(\, .= A min (i( +(>\§:Fj
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» LASSO Regularization:

A
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Notice we can regularize logistic regression in the same way.
How?
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Example: visual representation of ridge coefficients

A visual representation of the ridge regression coefficients for the
same example (n = 50, p = 30, and 02 = 1; 10 large true
coefficients, 20 small) at A = 25:

True Linear Ridge
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Does it work?

Recall in regression we can always write:

prediction error = unavoidable error + bias + variance
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Mean squared error for our last example
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Notice that this looks exactly like a model complexity versus test
error curve.



Remember that as we vary A we get different ridge regression
coefficients, the larger the A the more shrunken. Here we plot
them again as a function of A
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An important thing to notice is that the gray coefficient paths are
not exactly zero; they are shrunken, but still nonzero



The Lasso

Ridge regression gave better predictions than least squares, but
remained uninterpretable.

When p is large, we would like to carry out variable selection at the
same time. We do this with the lasso.

The lasso will shrink the estimate, B while also carrying out
automatic variable selection. As a result, it gives improved
predictions and interpretable (sparse) models!
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The LASSO
The LASSO?! estimate is defined as

Blasso — a%gmm |y — XBHQ + )\Z 1551

7=1
= argmin ||y — X5|2 + A |81
BERP N e
Loss Penalty

The squared /5 penalty ||3]|3 of ridge regression, has been replaced
by an ¢; penalty ||3]|1. Even though these problems look similar,
their solutions behave very differently

Note the name “LASSQ" is actually an acronym for: Least
Absolute Selection and Shrinkage Operator

'Tibshirani (1996), “Regression Shrinkage and Selection via the Lasso”
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The LASSO

e = argmin [ly — X513 + All8lh
BERP

The tuning parameter X\ controls the strength of the penalty, and
(like ridge regression):

> When A = 0, we get: "M‘& "‘0 ‘\eatd Q('C(W

™ ago

-’

» When A\ — oo, we get: P

For A\ in between these two extremes, we are balancing two ideas:
fitting a linear model of ¥y on X, and shrinking the coefficients.

12



The LASSO
B = argmin |ly — X 8|I5 + Al 8l
BERP
The tuning parameter A\ controls the strength of the penalty, and
(like ridge regression):

» When XA =0, we get:

» When A\ — oo, we get:

For A\ in between these two extremes, we are balancing two ideas:

fitting a linear model of ¥y on X, and shrinking the coefficients.
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Example: visual representation of LASSO coefficients

Our running example from last time: n = 50, p = 30, 0% =1, 10
large true coefficients, 20 small. Here is a visual representation of
LASSO vs. ridge coefficients (with the same degrees of freedom):
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Advantages of sparsity

> Interpretability: We can understand what the model relies on

r prediction (understanding f)
urderp

» We might gain some insight into the underlying data (though
(A@‘ not causally) (helping to understand f)

' UJ» If we're building a predictive score, we can measure fewer

esthings in the future (simpler f to apply later)
o
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Bias and variance of the lasso

Although we can't write down explicit formulas for the bias and
variance of the lasso estimate (e.g., when the true model is linear),
we know the general trend. Recall that

3125 = argmin ||y — XI5 + Al 8]l
Bckr

Generally speaking:
» The bias increases as A (amount of shrinkage)

» The variance decreases as A (amount of shrinkage)

What is the bias at A = 0?7 The variance at A\ = oo?
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Example: subset oefficients

Example: n = 50, p = 30; true coefficients: 10 large, 20 small
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The lasso can also be fit with glmnet.
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Example: moderate coefficienys

Example: n = 50, p = 30; true coetficients: 30 moderat
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Note that here, as opposed to ridge regression the varian€e doesn't
decrease fast enough to make the lasso favorable for small A
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Example: subset of zero coefficients

Example: n = 50, p = 30; true coefficients: 10 large, 20 zero
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Advantage in interpretation

On top the fact that the lasso is competitive with ridge regression
in terms of this prediction error, it has a big advantage with respect
to interpretation. This is exactly because it sets coefficients exactly
to zero, i.e., it performs variable selection in the linear model

For instance here is a picture from ESL — comparing LASSO and
Ridge on a prostate cancer dataset.
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Why does the lasso give zero coefficients?

» Easier to think about the constrained form instead of the
penalized form.
» Constrained Form for Ridge:
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» Constrained Form for LASSO: _(I Sma" — Y QAQS
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Surprisinme an equivalence between the constrained

forms and penalized forms. o1
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Why does t&e lasso give zero coefficients?
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(From page 71 of ESL)




