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HW 1, Problem 1 Quick Review
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Recap: Regularization Basics

I Regularization broadly is a collection of tools to reduce
overfitting.

I Overfitting roughly:

I Complex models might fit the training data well but may not
generalize (unless we have large amounts of training data).

I One solution (there are many others) is to trade-o� fit for
complexity, i.e. find a solution that has low-complexity but
fits the training data reasonably well.
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Recap: Regularization Continued

I Favoring less complex models can have another benefit
beyond reducing overfitting.

I Less complex models might be easier to interpret. Particularly,
sparse models which use few features can in some cases be
easy to interpret.

I This suggests a di�erent way to regularize models – to find
models that fit the training data but only use a small number
of features.

I The sparsity viewpoint motivates lots of di�erent ideas – best
subset fitting, greedily introducing features (forward stepwise
algorithms), using regularizers that encourage sparsity. These
models can also generalize well.
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Recap: Two Popular Regularizers
I Ridge Regularization:

I LASSO Regularization:

Notice we can regularize logistic regression in the same way.
How?
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Example: visual representation of ridge coe�cients
A visual representation of the ridge regression coe�cients for the
same example (n = 50, p = 30, and ‡2 = 1; 10 large true
coe�cients, 20 small) at ⁄ = 25:
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True Linear Ridge

The coe�cients are centered incorrectly, but they are much more
tightly packed than the linear regression coe�cients.
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Does it work?
Recall in regression we can always write:

prediction error = unavoidable error + bias + variance
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Linear regression:
Squared bias ¥ 0.006
Variance ¥ 0.627
Pred. error ¥ 1 + 0.006 + 0.627
Pred. error ¥ 1.633

Ridge regression, at its best:
Squared bias ¥ 0.077
Variance ¥ 0.403
Pred. error ¥ 1 + 0.077 + 0.403
Pred. error ¥ 1.48
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Mean squared error for our last example
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Notice that this looks exactly like a model complexity versus test
error curve.
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Remember that as we vary ⁄ we get di�erent ridge regression
coe�cients, the larger the ⁄ the more shrunken. Here we plot
them again as a function of ⁄
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The red paths correspond to the
true nonzero coe�cients; the gray
paths correspond to true zeros.
The vertical dashed line at ⁄ = 15
marks the point above which ridge
regression’s MSE starts losing to
that of linear regression

An important thing to notice is that the gray coe�cient paths are
not exactly zero; they are shrunken, but still nonzero
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The Lasso

Ridge regression gave better predictions than least squares, but
remained uninterpretable.

When p is large, we would like to carry out variable selection at the
same time. We do this with the lasso.

The lasso will shrink the estimate, ‚—, while also carrying out
automatic variable selection. As a result, it gives improved
predictions and interpretable (sparse) models!
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The LASSO

The LASSO1 estimate is defined as

‚—lasso = argmin
—œRp

Îy ≠ X—Î2
2 + ⁄

pÿ

j=1
|—j |

= argmin
—œRp

Îy ≠ X—|22¸ ˚˙ ˝
Loss

+ ⁄ Î—Î1¸ ˚˙ ˝
Penalty

The squared ¸2 penalty Î—Î2
2 of ridge regression, has been replaced

by an ¸1 penalty Î—Î1. Even though these problems look similar,
their solutions behave very di�erently

Note the name “LASSO” is actually an acronym for: Least
Absolute Selection and Shrinkage Operator

1Tibshirani (1996), “Regression Shrinkage and Selection via the Lasso”
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The LASSO

‚—lasso = argmin
—œRp

Îy ≠ X—Î2
2 + ⁄Î—Î1

The tuning parameter ⁄ controls the strength of the penalty, and
(like ridge regression):

I When ⁄ = 0, we get:

I When ⁄ æ Œ, we get:

For ⁄ in between these two extremes, we are balancing two ideas:
fitting a linear model of y on X, and shrinking the coe�cients.
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The LASSO

‚—lasso = argmin
—œRp

Îy ≠ X—Î2
2 + ⁄Î—Î1

The tuning parameter ⁄ controls the strength of the penalty, and
(like ridge regression):

I When ⁄ = 0, we get:

I When ⁄ æ Œ, we get:

For ⁄ in between these two extremes, we are balancing two ideas:
fitting a linear model of y on X, and shrinking the coe�cients.
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Example: visual representation of LASSO coe�cients
Our running example from last time: n = 50, p = 30, ‡2 = 1, 10
large true coe�cients, 20 small. Here is a visual representation of
LASSO vs. ridge coe�cients (with the same degrees of freedom):
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Advantages of sparsity

I Interpretability: We can understand what the model relies on
for prediction (understanding ‚f)

I We might gain some insight into the underlying data (though
not causally) (helping to understand f)

I If we’re building a predictive score, we can measure fewer
things in the future (simpler ‚f to apply later)
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Bias and variance of the lasso

Although we can’t write down explicit formulas for the bias and
variance of the lasso estimate (e.g., when the true model is linear),
we know the general trend. Recall that

‚—lasso = argmin
—œRp

Îy ≠ X—Î2
2 + ⁄Î—Î1

Generally speaking:
I The bias increases as ⁄ (amount of shrinkage)
I The variance decreases as ⁄ (amount of shrinkage)

What is the bias at ⁄ = 0? The variance at ⁄ = Œ?

16

0



Example: subset of small coe�cients

Example: n = 50, p = 30; true coe�cients: 10 large, 20 small
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The lasso can also be fit with glmnet.
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Example: all moderate coe�cients
Example: n = 50, p = 30; true coe�cients: 30 moderately large
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Note that here, as opposed to ridge regression the variance doesn’t
decrease fast enough to make the lasso favorable for small ⁄
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Example: subset of zero coe�cients

Example: n = 50, p = 30; true coe�cients: 10 large, 20 zero
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Advantage in interpretation
On top the fact that the lasso is competitive with ridge regression
in terms of this prediction error, it has a big advantage with respect
to interpretation. This is exactly because it sets coe�cients exactly
to zero, i.e., it performs variable selection in the linear model

For instance here is a picture from ESL – comparing LASSO and
Ridge on a prostate cancer dataset.
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Why does the lasso give zero coe�cients?
I Easier to think about the constrained form instead of the

penalized form.
I Constrained Form for Ridge:

I Constrained Form for LASSO:

Surprisingly, there is an equivalence between the constrained
forms and penalized forms. 21
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Why does the lasso give zero coe�cients?

(From page 71 of ESL)
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