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Recap: Regularization —

» Trade-off fit with model complexity for better generalization.

-- Linear regression
—— Ridge regression

Prediction error
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Amount of shrinkage

» Other benefits: simpler (sparse) models may be
cheaper/faster to evaluate, easier to interpret
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Recap: Regularization — How?

» Lots of different ways. Two basic, popular ones.
» Ridge penalty:

f"rithe, = %3;"‘ -2—'5:(5")(' ) + ?i)s

» LASSO penalty:
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» Roughly, if we care solely about prediction, and suspect that
most_of our predictors are useful (perhaps have moderately
large coefficients) use(Ridge) If you have a very
high-dimensional problem (many predictors), or if you care

about mor% than just prediction (perhaps interpretability) then

use (LASSO



Recap: Regularization — in a picture

Our running example from last time: n = 50, p = 30, o2 =1, 10
large true coefficients, 20 small. Here is a visual representation of
LASSO vs. ridge coefficients (with the same degrees of freedom):
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Assumptions Philosophy

» You might be used to seeing for example the method of linear
regression motivated by a series of assumptions:

» Ely|X =z =BTz ory=pT2+¢ Ele] =0, or e ~ N(0,0?)

» T L X — e

> Predictors are not highly correlated. Jo motivale US‘Ej
> OPservations are i.i.d. \QaS—‘- Sc‘uareg :
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» None of these assumptions are necessary to use the method of
(regularized) least squares, and in general the method might
yield useful predictions even when none of these assumptions
are true (or when they are true in some approximate sense).

» “ML/Statistical Learning Philosophy”: Focus mainly on
prediction (less on inference), evaluate using held-out-set

performance.
———




Weak and Strong Modeling

» It is worth thinking about stages of method development:

1. Constructing the method
2. Evaluating or interpreting the output of the method
3. Studying the properties of the method

» btrong Modeling: Make strong assumptions about the data

through stages (1)-(3).
» (Weak Modeling) Make strong assumptions about the model
for stage (1). Do everything else more pragmatically.

» | personally like the weak modeling approach.



—
Another Example Q'X”v]: Eié(ii
» In classification with logistic regression: we have implicitly (4 xr(%:)

made many modelling assumptions:
» That the conditional distribution of y|X has a certain form
» That the log-likelihood is a reasonable way to fit the model,
the data is i.i.d.

» That the loss we care about is the 0/1 loss (3 not obvieug w"z :

| 2

» Our preference for weak modeling dictates that we use our
modeling assumptions to derive the method (we did this) but
then we move away from assumptions when evaluating the
method. We simply evaluate our classifier using held-out data
(relatively assumption-light). may@ Jah
» If it does not work, we try to understand why (was was Im
log-likelihood a bad choice, was 0/1 loss inadequate, was a
linear decision boundary an over-simplification, is it bias or
variance that is hu‘rting us, ...) and use thls to |dent|fy better

methods. Eou over H(J or




Changing Gears: Back to Generative Classifiers

Generative models are nice, because they let us think about
modeling the process that generated the data

Think about the classic MNIST digits data:

ol = 3456789
o2z 48¢l7 84
013457 (€T
D23 v 56787
2133 %[s 4789

It might be easier to describe what a 4 looks like than how all the
digits are different.



Why do we need another classifier?

Generative classifiers allow us to model problem in a different
way.

Logistic regression can be unstable for linearly separable data.
More generally, need to regularize.

Every classification method is derived from different
assumptions about the problem. When these assumptions are
true/close to true then the corresponding classifier will do
very well.

So for instance, Linear Discriminant Analysis (LDA) will likely
outperform logistic regression when the conditional
distribution of X |y = k are Gaussian with the same
covariance matrix.



Reminder: Multivariate Gaussian
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Reminder: Multivariate Gaussian, Maximum Likelihood

> Suppose we observed X1,..., X, and wanted to fit a_

Gaussian to thls data. — neea\ {'o QQ—F\M&\—Q (/.L 2)

» Maximum leellhood Mean Estimation:

A d
g= 1>
n (=
» Maximum Likelihood Covariance Matrix Estimation:
A n ANT
S = L2 (x — )t )
hn 1=I A
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Basic Ildea of Generative Classifiers

-~

» Suppose that we knew fir(z) = P(X = z|Y = k) for all of our
classes k. f is the density function for a particular x for a
particular class.

» Roughly, we would think it is unlikely that a particular
observation came from class k if fi(x) is very small.

» More precisely, we can use Bayes theorem:

ply-plxn)= B R@ [k
Z@(Y:))%u) probabil
J

(\/: h) = -T_';L ~ F“‘O'f leﬂalal"i‘ﬁeﬁ

)
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Linear discriminant analysis

We need to estimate P(X = z|Y = j) and prior probabilities 7; in
order to use the generative form of the Bayes classifier.

Linear discriminant analysis (LDA) does this by assuming that the
data within each class are normally distributed:

%(m) =P(X =2|Y =j) = N(u;,2) density

We allow each class to have its own mean p; € RP, but we assume
a common covariance matrix X € RP*P. Hence

1 1 1
ﬁ (@) = GrypPde)ie ©P {- o (7 = m) 5w = )

Think of this as a model for classification problems where the
different classes look like shifted clumps.
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P(Y =j|X =) -7; =4;(z) - 7; is the largest. We can define the

What does the decision;le look like? We want to find j so that
rule:

1 1 Ty—1
LDA _ Y NS (s .
4 (m)_?igf?? (27)P/2det (D)2 3/( i)

= @rgmax 39( )
—arglmax - /(X-/u)) Dy tX /M)> + |hT

= argmax 6 (

j=1,.K S/ /Jb ‘:L/_LJ i/\{)—”\[\\b

We call §;(x), j =1,... K the discriminant functions. Note

_ 1
§i(x) =TS, — 2M32 L + logm;

is just an affine function of x
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In practice, we have to estimate the parameters m;, u;, and . We
estimate them based on the training data z; € RP and
y; €4{1,...K},i=1,...n, by:

> T = nj/n the proportion of observations in class j

Juj ; Ti, the centroid of class j
U\ﬂ‘i“ag ZJ 1 Y y—i (@i — fij) (@ — fij)", the pooled sample
=

O,S’& 0+ covariafite matrix —
[700'94 (Here n; is the number of points in class j)

nce.
Co‘va”(f'hls gives the estimated discriminant functions:

~ ~ 1
0j(x) =z, — 2,LLTZ [+ log7;
and finally the linear discriminant analysis rule for new x € RP?,

]‘A’LDA(;U) — argmax gj(x)

j=1,..K
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Example: LDA decision boundaries
Example of decision boundaries from LDA (from ESL page 109):

1P () fLPA ()

Are the decision boundaries the same as the perpendicular
bisectors between the class centroids?
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Thinking about the decision function

AN ~ 1 PR /\_ ~ ~
]?LDA(QJ) = @rglmal? :L‘TE_l,uj — 5/{?2 1,uj + log 7
7j=1,...

What changes if our loss function is not 0-1?7 What changes if the

population proportion 7 changes? / /‘ -V
. — +[/LQ ,{\’t LY e

C\/\asjez

no
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Thinking about the decision function

Let's look at the (x; — i) X! (z; — pz) term that appears in the
LDA decison rule. How should we think about this?
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Mahalanobis distance

Mahalanobis distance measures the distance from a center in terms
of the variance of the distribution.

For a Gaussian, it captures how far out in the a|I of the Qa
S rae

distribution a point is. — ) Z X,/ )
P ik (%,%/@Aﬂ C 2

(x;) e amall.
This is used for LDA, QDA, and Multlvarlathaussmn

distributions.

It can also be used for outlier detection and for clustering!

Suppose I've seen a lot of data, and now a new point comes along.
How can | tell whether it's a “rare” or outlier point?
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Mahalanobis distance, PCA, and LDA

Note that LDA equivalently minimizes over k =1,... K,

1 o TA— - -
5 (@ = fik) X7 (@ = i) — log 7y

It helps to factorize 3. (i.e., compute its eigendecomposition):
> =UDUT

where U € RP*P has orthonormal columns (and rows), and
D = d1ag(d1, ...dp) with d > 0 for each k. Then we have

-1 =uD-'U7, and
o >
(x — fie)"E @ — fig) = (><’/“ JUD T (X'/“ )

=(%- ) (X~ /\kz) % - }xk",

This is JUSt the squared distance between Z and ,uk

|/ __ N\
X D aU X PL ~ V2 U /‘A&. 23



Sphering
What is this transformation doing? Think about applying it to the
observations:

T; :D_l/QUTCEi, 1=1,...n

This is basically sphering the data points, because if we think of
x € RP were a random variable with covariance matrix X, then

Cov(D~207z) [ECD'/"*U (x- )M)(X',M) up >
"Dy iU:D"Z Bk g U

Original data Sphered data
~ o « 609 ° o o :i])/iyw )
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- - o o
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— — 4 o
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LDA transformed

Hence the LDA procedure can be described as:

1. Compute the sample estimates 7y, /%, 5

2. Factor i asin &, = UDUT

3. Transform the class centroids fi, = D~/2U7T iy,

4. Given any point z € RP?, transform to & = D~1/2UTz € R,
and then classify according to the nearest centroid in the

transformed space, adjusting for class proportions—this is the
class k for which 3| — fi||3 — log 7 is smallest

25



Variations on LDA: unequal X

The LDA model assumes that our covariance is the same for all
groups. What if it's not?

class
o1
o2
3

26



All the same math goes through, giving Quadratic Discriminant
Functions (and QDA)

1 _ 1
Op(@) = —5(z - pe) 2T e — ) — 5 10g |X| + log 7k
1 1

) . 1
= =5 Sp N T — S Sy e — 5 log [ S| + log e

The X matrices are now different in each function are now
different, and the boundarlis 0k (x) > dp are no longer linear.

Instead, they are q Yﬂ’hc

This allows the boundaries to curve around groups to account for
different patterns of spread. It comes at a cost though:

27



Xo
X

Figure 4.9 from ISL. Dashed purple curve is the Bayes classifier
decision boundary. Solid green curve is QDA, dotted black line is
LDA. Left: True boundary is linear. Right: True boundary is
quadratic
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Variations on LDA: unequal X

Quadratic discriminant analysis (QDA):

29



Variations on LDA: high dimensions

LDA really becomes instructive when we consider its performance

over a range of dimensions. k 0ang k‘)
means —
Fitting QDA requires estimating < k Covariance Mdﬂ'cq;vw
X

Fitting LDA requires estimating _— k"

) FLPM)/Q*
As the number of parameters increases, the \fan ancof our
estimator increases (but the pgt hopefully decreases).

Suppose that we have two groups, drawn respectively from
N(p1,%1) and N(u2,39). If we choose to use LDA instead of
QDA, we are choosing a more biased model to reduce variance.
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err

0.20 0.25

0.05 0.10 0.15
|

0.00

Variations on LDA: high dimensions

- = LDA Train
—— LDA Test
- —= QDA Train
—— QDA Test
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Variations on LDA: high dimensions

Suppose the dimension gets even higher? ﬂA ‘fO'ﬂW\K‘Q z
oy o w%OﬂA madnx C‘D“'Y oc}- Van‘ance-s)
—  reduce fnmmderﬁ wDbm OCF) — OC\?)

What if | can’t even estimate the group means well? “\/

%Mom'%‘ wedh A0 .
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