Classification: Support Vector Machines and

Siva Balakrishnan
Data Mining: 36-462/36-662

February 12th, 2018

Chapter 9.2 - 9.5 of ISL

A Quick Announcement

Carnegie Mellon University
Statistics & Data Science

INTERNSHIP PANEL
& DISCUSSION

FEB 13TH, 2019 AT 5:00PM
CUC DANFORTH

0 IN
JWDER now ¥ LETERESTED "
" \NTERNSH\P? ARNING

COME HEAR ABOUT THE
INTERNSHIP EXPERIENCES
OF OTHER STAT & DS
STUDENTS!

Recap: Naive Bayes
P'n'of

» Another generative classifier, i.e. i
(fk(x; =P(X =z|Y = k), anfl 7, := P(Y = k) and classify

according to:

A~

f(z) = arg max fi(z)my.

In Naive Bayes, we model that the features X1,..., X, are
independent conditional on the class label.
This means that: under NB

b -
fk(x):HP(Xi:I'i’Y:k), agg'

P ——
>

so we only need to estimate or model p univariate
distributions per class. Estimating univariate distributions is
much much much easier than estimating a high-dimensional
multivariate distribution.

Recap: Naive Bayes

Prior probabilities
0.0009-
2 default
default ‘% 0.0006+ [INo
No [} [Yes
I Yes ©
0.0003-
0.0000+
0 1008 2000
balance
“71.00+
0.00003 I
80.75-
3
20.00002+ default = default
2 No £ 0.50- I No
g Yes > [Yes
0.00001 A
A -
0.00000 70.00+

default e ? A «
» To classify a new point we use: "f’u L nye‘ >/. {—Nﬂ “m

fyes = fyes(lncome) fyes(balance) fyes(student)
f No = fi No(income) fNo(balance) fNo(student)

Recap: Gaussian Naive Bayes

» When the covariates are all continuous, one version of the

Naive Bayes classifier assumes that: /7(,’QSS‘ l‘ﬂd Vaﬂﬁﬂd
fr(Xi) ~ N@ %),
LA

i.e. that each feature is (univariate) Gaussian with common

variance across classes. This is called the Gaussian Naive
. _—\
Bayes classifier.

» This classifier is identical to LDA with a diagonal covariance
matrix. Even in this case, the independence assumption of
Naive Bayes reduces the number of parameters we need to
estimate.

» More generally, Naive Bayes uses a flexible model for the
univariate distributions (which lowers bias relative to LDA)
but assumes the features are independent given the label
(which increases bias).

Recap: Hyperplanes

» Many classifiers we have seen so far have the form:

» Hyperplanes are unchanged if we multiply all the coefficients
by some positive number. We will adopt the convention that:

» With this standardization, we showed that the distance of a
point z to the hyperplane is given by: ,& @ .

Recap: Support Vector Machines — Linearly Separable

» When the data is linearly separable the SVM just attempts to
draw a line through the middle —i.e. one that has largest
distance to the closest point.

» This distance of a plane to the closest point is sometimes
called the margin. So SVMs are sometimes called
“maximum-margin classifiers”.

» (Recall y € {—1,1}). To find the SVM classifier in the
separable case we solve the following optimization problem:

) I\/Iaximiz@f)—-~a Maﬁin
‘F subject to ZBQ =1,
1 #
‘*\?\ &~ 4i(Bo +a]]5) > M.

Slnce in the separable case, 3;(8y + z1 8) > 0, this is just the
margin of the i-th point.

Recap: Support Vector Machines — Main Issues

» When the data is not linearly separable, there is no solution to
the optimization problem with M > 0.,

» The other problem is that the hard-margin SVM (i.e. the
SVM on separable data) can produce undesirable results. UIG‘;QHQ

27

(ISL pg.345)

We'd like to sometimes allow a few mis-classifications as long
as our final classifier has a large margin (i.e. we'd like to be
able to trade these off).

Support vector classifier ¢; - S'aCk
variahles .

+unin

’ T::J“k'

yi(Bo + =} B) > ﬁ& — Ez’)] 6' 50 hen
oy (x) < M.

» Parameter C' determines “softness” of the margin. Big C
makes it easier to cross. In particular, no more than C b&

observations cross because. . . C{ . 7
(70, 67 1.

MaximizeMﬁ Bo,e M

subject to 262—1 g;, >0 Zez

» Variable ¢; encodes point location: £; = 0 outside margin
g; > 0 inside margin, €; > 1 across boundary.

o ¢=1> SQ(P‘\'P‘M) 0. X'X' ?":O.

more ‘Hiam C
5 Se¢gv7vC <
1

(ISL pg. 348)

The parameter C' trades off bias and variance.

It essentially determines how far from the boundary we should be
looking when forming our line.

We can tune C using cross-validation.

We now have yet another linear classifier. This one requires even
fewer assumptions, but still allows tuning and gives reasonable
answers.

11

How do these linear classifiers compare?

Though the decision rules are all linear, these methods produce
different classifications because they rely on different assumptions.

In order from strongest to weakest assumptions:

1. LDA: Works well if the groups are in “clumps” so that the
Gaussian distribution is reasonable. Also assumes the shapes

are similar. (OJ OC'C& ¢ mcqr

2. Logistic: Only requires that log Pg ég ig ~ z1 3, which is
strictly weaker. LDA will do better when it's assumptions are
reasonable, but otherwise worse. Logistic focuses more on the
boundary points.

3. SVM: The fewest assumptions, and entirely focuses on points
near the boundary. Can work well with the other models are

\ - -
far from reasonable. Also most common to us in this

one.
12

Multiclass SVM

» Unlike logistic regression and LDA there is no particularly
natural way to take the (binary) SVM and use it in multi-class
settings.

» Two popular methods are:

1. One-versus-all classification: Here we fit K different SVMs
{(Bo1,P1),---,(Box,Br)} by comparing each class to all the
other classes.

To finally classify a point we use:

A~

f(x) = arg m]?X BOk + E,fa:

2. One-versus-one classification: Here we fit ("2() different SVMs,
by comparing each class with every other class.
To classify a new test example: we classify it according to each
of the classifers and pick the class that is chosen most often.

13

Non-Linear SVMs

Support Vector Classifiers give linear boundaries. What are we
going to do if we want something non-linear?

o (=] ’
= *
- @ /.0
<+ ‘e < A
e o /. o0 R o«
) o o 2l
(&4 ° ’ 00 & .,’
o~ - . ° ST . Lol P S
5 o g RS
Se s/ PECRR
3 3 /e Lt
k. >< 0% s
© o - ./z -".-0
e®® Y '.”,'oc""
¢ () .',/ .
o (] 6%
Rl o A 24 A SEREESERRS
. s o’ : AT
A L2 (30 ol
° L.
. _ OV A
Al e & T JR IR 4
T T T T T T =T T T T
—4 -2 0 2 4 -4 -2 0 2 4
Al Xl

(ISL pg.349)

14

Non-Linear SVMs
{oalure eypansion.

We could start making up transformations of the x values. For

example, polynomials in the z, like 2%, x5, 715 9 2

(xl x)—_QCXQ x,_ X|) x}) \[‘%2)-
Linear boundaries in this higﬁer %imensional sf)ace'om_a_nsfo.tmed——’
x values are equivalent to non-linear boundaries in lower
dimensional space. You've seen this before in regression when

adding terms like quadratics.

In high dimensions, this can be a lot to keep track of and to
compute. Even constructing reasonable expansions can be difficult.

The “kernel trick” gives a convenient way around this.
—

15

Feature Expansions

» Suppose we added quadratic features and solved the SVM

then we would solve: X|X) ~
. Eﬁ‘ i o fm.

=1,6>0,) &<C

=1k=1k>j i=1

Maximize, .~. M
M757ﬂ750,€=

p
subject to Z 632-
j=1

- p
vilBot+xi B+D. D Biwiwij) = M(1— &)

J=lk=1Lk>j

» We now have to optimize over roughlariables, and this
can explode very quickly (if we keep adding new features).

16

Kernelization - Prelude

» The kernel trick, or kernelization, is roughly a way to obtain
non-linear methods from linear ones without the extra
computational burden of doing big feature expansions.

» At some point, a big fraction of the ML papers published were
on “kernelizing” various linear algorithms.

» |t was a very mysterious trick for a while, and worked quite
well in practice (somewhat like deep learning today).

17

Kernelization

» Before we get to kernelization, we need a simple fact: the
optimal solution to the SVM problem (in both the separable

and non-separable cases) is of the form/p Kg“)fef@f\kf —IG\
B:i%‘ibi, é'E 0(GR

where z; € RP are the training data Thls fact is true if the
vectors x; span RY (since then every vector can be written in
this form) but is also more generally true.

» This in turn medns that}'\b.?SVM hypzr Hne can_\be written

in the form: ﬁf ’%“’P X = Iol,)(‘)
Bo + Z ozzx x. m mdqu

—] XLKQ.

» This has many nice implications. One S|mple one is that now
instead of optimizing over 3 in the SVM program we can
optimize over the coefficients a. This is often called the dual
form of the SVM. 18

Kernelization continued

» |f we know that, 6 > auxq, then we can re-write the

SVM program: G‘ rav

MaximizeMﬁ Bo,e

M
x)]
subject to 262—1 g; >0, Z&SC /[
(Bo+xT6 > M(1-z) Jefm‘k on
(@ ¥ DnL'
K%L Maximizeps o8, M
v bject t 93 7;1 i >0, i <C
; SUJeCOZZaT : Ze_

| i=1j=1 P X - " 1 T i
%ol*‘ WZ% %(MZ—EJ. 578)3))(‘
2\ Curious fact: O'\ly aevﬁl\as D“ XTX) ’V-QU) -

The kernel trick finally
R 2
(7(0)’(.2) — (’Ql)*2) X SCD-) X‘X/L)

Suppose we knew a nice, high dimensional transformation
¢ : R" — R™, and we wanted to fit a linear SVM in that R™
space to get better separation.

We would still only need th n that higher
dimensional space!

What if we cheat? Can we just compute the inner products
directly, without ever forming the high-dimensional vectors?

X}TX' — In djer SFO‘Q

how Strm,ao' afQ
X\ XJ —_— me@dﬂ‘-\j % 0)(J‘

20

We define a kernel function — just an inner product in a higher
dimensional space — which meas res th? imilarity of two
observations. For example:)5 r (ATI\S a SC&'&‘.

Linear kernel: K (x;,zy) = >_5_1 xijy; is our u'sualjnner product
\jx

Polynomial kernel: K (x;, zy) = (1 + 30 xwx” @4 (Y,, 7)

Radial kernel: K (z;, ;) = exp (—’)/Z] (@i — Cﬁzg)
C> Rodia) Boisfn kernd expl- T

All of these correspond to forming |gher dimensi onai vectdrs by
transforming x, and then taking usual inner products. However, we
never need to actually form the vectors!

)‘ﬂow S\MJar are Xg‘)(\Z

21

Example: Polynomial kernel of order 2

)(-

Suppo e observe points (z1,z2), but we want

@(7()" (\/_561\/_332\/_371562331562 SVMO“

so that we can have quadratic boundaries. (Constants are _]USt

chosen to make the math nice) ‘Qarn
Y iy

Compare taking inner products in the larger space to the kernel
2
K(z,y) = (1+ X %)

space STJ)- (i J" \" 1 2, Zy‘\,u }ﬁf’f T aicx)

$09) ﬁj) b Byt 0512 m 7,.* ><‘«v.
+)Cz 7& x'\) wl“

—

Ci l/\owe o dex ferms

We can look for good linear boundaries in the high dimensional
space (with no new math!), which will correspond to non-linear
boundaries in our new space.

23

The end result can be quite flexible

(ESL pg. 21)

24

The end result can be quite flexible

...............

Training Error:0.16055
Test Error: 0.218 - o SERIREEE
BayesError: 02100

(ESL pg. 425)
25

How should we think about this? N
Our hyperplane used to have the form: 3 P-; io(.ﬁ(.
=

~ n 1
f(x) = Bo+

Once we kernelize it has the form: /Rg\“‘e W"‘R

_ n kesnels
F@) = fo+ 3 kK (zi,2).
=1

L | :
Imagine we use an RBF kernel: (K

) 2 e
1(331]%,])))C”"NJ\

%yl =0,

This function is tiny if x and 2z’ are far apart, so the classifier
is doing something quite intuitive — it is essentially ignoring
points that are far away from the point x — and only using
ones close by in making its classification decisions.

p
K (z,2") = exp (7

J

26

Can we kernelize other linear classifiers (and regressors)?

» The short answer is yes.

> Lets see another example: suppose we wanted to kernelize
logistic regression. We would suppose that:

R n
— Z QT ,
i=1
then our conditional probability just becomes:

exp(8lz)
1+ exp(BTx)

PY =1|X =z) =

L/—\/_/
» So to kernehze)t we would simply use: KQY\(LCQ X|

67([’(1"(‘ X ,)C)

L + and opt|mize the log-likelihood over the coefficients . This is
called kernel logistic regression.

Y=1X=2)=

27

SVM: a different perspective

There is another important way of thinking about the linear SVM.
It turns out that we can re-write the optimization problem (its a

bit of work) as solving: ' d e .daﬂ&r
. wP"' 9%
min - (1 wg), + D11 Hinge oS

w
This is like replacing 0-1 loss with a hinge function and adding a
ridge penalty to keep things regularized!
ge penalty p things reg m”i“)’“"’coz.
& @ 0-1Loss — —_
_ O Exp loss
o @ Hinge loss

Loss(x)

28

Empirical risk minimization
This general pattern:
1. We want to minimize:

E{Y # f(X)}
2. And so we actually try to minimize its empirical version:

LY # Fa)

3. But we can’t even do that for classification. So we introduce
a nicer loss L and minimize

> Ll ()

The first two steps are known as empirical risk minimization. The
last step almost always follows for classification.

29

Loss

1.5 20 25 3.0

1.0

0.5

0.0

Empirical risk minimization

Misclassification
Exponential
Binomial Deviance
Squared Error
Support Vector

y .

f

30

