
Classification: Support Vector Machines and

Kernels

Siva Balakrishnan
Data Mining: 36-462/36-662

February 12th, 2018

Chapter 9.2 - 9.5 of ISL

1

0

A Quick Announcement

2

Recap: Näıve Bayes

I Another generative classifier, i.e. we estimate
fk(x) := P(X = x|Y = k), and fik := P(Y = k) and classify
according to:

‚f(x) = arg max
k

fk(x)fik.

I In Näıve Bayes, we model that the features X1, . . . , Xp are
independent conditional on the class label.

I This means that:

fk(x) =
pŸ

i=1
P(Xi = xi|Y = k),

so we only need to estimate or model p univariate
distributions per class. Estimating univariate distributions is
much much much easier than estimating a high-dimensional
multivariate distribution.

3

O
prior

under NB
ass

Recap: Näıve Bayes

0.00

0.25

0.50

0.75

1.00

No Yes
default

P(
D

ef
au

lt
=

...
)

default
No
Yes

Prior probabilities

0.0000

0.0003

0.0006

0.0009

0 1000 2000
balance

de
ns
ity default

No
Yes

0.00000

0.00001

0.00002

0.00003

0 20000 40000 60000
income

de
ns
ity default

No
Yes

0.00

0.25

0.50

0.75

1.00

No Yes
default

P(
st

ud
en

t =
 Y

es
 |

de
fa

ul
t =

 ..
.)

default
No
Yes

I To classify a new point we use:
‚fYes = ‚fYes(income) ‚fYes(balance) ‚fYes(student)
‚fNo = ‚fNo(income) ‚fNo(balance) ‚fNo(student) 4

O

O
Eyes'tyes EIn Tino

Recap: Gaussian Näıve Bayes

I When the covariates are all continuous, one version of the
Näıve Bayes classifier assumes that:

fk(Xi) ≥ N(µik, ‡2
i),

i.e. that each feature is (univariate) Gaussian with common
variance across classes. This is called the Gaussian Näıve
Bayes classifier.

I This classifier is identical to LDA with a diagonal covariance
matrix. Even in this case, the independence assumption of
Näıve Bayes reduces the number of parameters we need to
estimate.

I More generally, Näıve Bayes uses a flexible model for the
univariate distributions (which lowers bias relative to LDA)
but assumes the features are independent given the label
(which increases bias).

5

w O
class ind variance

Recap: Hyperplanes

I Many classifiers we have seen so far have the form:

‚f(x) =
I

1 xT ‚— + ‚—0 > 0
≠1 xT ‚— + ‚—0 < 0

= sign(xT ‚— + ‚—0)

I Hyperplanes are unchanged if we multiply all the coe�cients
by some positive number. We will adopt the convention that:

pÿ

j=1

‚—2
j = 1.

I With this standardization, we showed that the distance of a
point z to the hyperplane is given by:

fl(z) := |zT ‚— + ‚—0|.

6

µ otpx

Recap: Support Vector Machines – Linearly Separable

I When the data is linearly separable the SVM just attempts to
draw a line through the middle – i.e. one that has largest
distance to the closest point.

I This distance of a plane to the closest point is sometimes
called the margin. So SVMs are sometimes called
“maximum-margin classifiers”.

I (Recall y œ {≠1, 1}). To find the SVM classifier in the
separable case we solve the following optimization problem:

Maximize M

subject to
pÿ

j=1
—2

j = 1,

yi(—0 + xT
i —) Ø M.

Since in the separable case, yi(—0 + xT
i —) Ø 0, this is just the

margin of the i-th point.
7

Kid
margin

equatorial

Recap: Support Vector Machines – Main Issues

I When the data is not linearly separable, there is no solution to
the optimization problem with M Ø 0.

I The other problem is that the hard-margin SVM (i.e. the
SVM on separable data) can produce undesirable results.

(ISL pg.345)
We’d like to sometimes allow a few mis-classifications as long
as our final classifier has a large margin (i.e. we’d like to be
able to trade these o�).

8

unstabl

o marginbig
margin

smaller

Support vector classifier

MaximizeM,—,—0,‘ M

subject to
pÿ

j=1
—2

j = 1, Ái Ø 0,
nÿ

i=1
Ái Æ C

yi(—0 + xT
i —) Ø M(1 ≠ Ái)

I Parameter C determines “softness” of the margin. Big C
makes it easier to cross. In particular, no more than C
observations cross because. . .

I Variable Ái encodes point location: Ái = 0 outside margin,
Ái > 0 inside margin, Ái > 1 across boundary.

9

Ci slack
variables

tufiar9ameter

af if Eiso then
margin xi M

can be
C i 70 GII

If E I yicpotptxi7 O.ee xitpo
O

l I d

incorrectly
classified

Potpie

T Ei O

we
I zeiEt yetM r

y
I

C bounds the of training
errors

every mis classified fist
more than C

Fei c C

(ISL pg. 348) 10

cab I Y Of'a support

but meaningless
vectors

I

r9ffSVs smalic

lowtrariance
smaller

highbias margin

hdgheruar.ca sfallsvnsu.mber

g of

Iot of
throwthe
pointsout

toU support vector

The parameter C trades o� bias and variance.

It essentially determines how far from the boundary we should be
looking when forming our line.

We can tune C using cross-validation.

We now have yet another linear classifier. This one requires even
fewer assumptions, but still allows tuning and gives reasonable
answers.

11

How do these linear classifiers compare?

Though the decision rules are all linear, these methods produce
di�erent classifications because they rely on di�erent assumptions.

In order from strongest to weakest assumptions:
1. LDA: Works well if the groups are in “clumps” so that the

Gaussian distribution is reasonable. Also assumes the shapes
are similar.

2. Logistic: Only requires that log P (Y =1|X=x)
P (Y =0|X=x) ¥ xT

i —, which is
strictly weaker. LDA will do better when it’s assumptions are
reasonable, but otherwise worse. Logistic focuses more on the
boundary points.

3. SVM: The fewest assumptions, and entirely focuses on points
near the boundary. Can work well with the other models are
far from reasonable. Also most common to use kernels in this
one.

12

logodds is Linea

O

Multiclass SVM

I Unlike logistic regression and LDA there is no particularly
natural way to take the (binary) SVM and use it in multi-class
settings.

I Two popular methods are:
1. One-versus-all classification: Here we fit K di�erent SVMs

{(‚—01, ‚—1), . . . , (‚—0K , ‚—K)} by comparing each class to all the
other classes.
To finally classify a point we use:

‚f(x) = arg max
k

‚—0k + ‚—T
k x.

2. One-versus-one classification: Here we fit
!K

2
"

di�erent SVMs,
by comparing each class with every other class.
To classify a new test example: we classify it according to each
of the classifers and pick the class that is chosen most often.

13

Non-Linear SVMs

Support Vector Classifiers give linear boundaries. What are we
going to do if we want something non-linear?

(ISL pg.349)

14

I

Non-Linear SVMs

We could start making up transformations of the x values. For
example, polynomials in the x, like x2

1, x2
2, x1x2.

Linear boundaries in this higher dimensional space of transformed
x values are equivalent to non-linear boundaries in lower
dimensional space. You’ve seen this before in regression when
adding terms like quadratics.

In high dimensions, this can be a lot to keep track of and to
compute. Even constructing reasonable expansions can be di�cult.

The “kernel trick” gives a convenient way around this.

15

feature expansion

Cx Xs Cx Xixxx

Feature Expansions

I Suppose we added quadratic features and solved the SVM
then we would solve:

Maximize
M,—,Â—,—0,‘

M

subject to
pÿ

j=1
—2

j +
pÿ

j=1

pÿ

k=1,k>j

Â—2
jk = 1, Ái Ø 0,

nÿ

i=1
Ái Æ C

yi(—0 + xT
i — +

pÿ

j=1

pÿ

k=1,k>j

Â—jkxikxij) Ø M(1 ≠ Ái)

I We now have to optimize over roughly p2 variables, and this
can explode very quickly (if we keep adding new features).

16

lots ofthem

O

Kernelization - Prelude

I The kernel trick, or kernelization, is roughly a way to obtain
non-linear methods from linear ones without the extra
computational burden of doing big feature expansions.

I At some point, a big fraction of the ML papers published were
on “kernelizing” various linear algorithms.

I It was a very mysterious trick for a while, and worked quite
well in practice (somewhat like deep learning today).

17

Kernelization

I Before we get to kernelization, we need a simple fact: the
optimal solution to the SVM problem (in both the separable
and non-separable cases) is of the form:

‚— =
nÿ

i=1
–ixi,

where xi œ Rp are the training data. This fact is true if the
vectors xi span Rd (since then every vector can be written in
this form) but is also more generally true.

I This in turn means that the SVM hyperplane can be written
in the form:

‚f(x) = —0 +
nÿ

i=1
–ix

T
i x.

I This has many nice implications. One simple one is that now
instead of optimizing over — in the SVM program we can
optimize over the coe�cients –. This is often called the dual
form of the SVM. 18

Representer fam
Xi E IR

P
Li ER

P

9 potpax Pot If i x iYx
_w

inner products
between XI Xi

Kernelization continued

I If we know that, ‚— = qn
i=1 –ixi, then we can re-write the

SVM program:

MaximizeM,—,—0,‘ M

subject to
pÿ

j=1
—2

j = 1, Ái Ø 0,
nÿ

i=1
Ái Æ C

yi(—0 + xT
i —) Ø M(1 ≠ Ái)

as

MaximizeM,–,—0,‘ M

subject to
nÿ

i=1

nÿ

j=1
–i–jxT

i xj = 1, Ái Ø 0,
nÿ

i=1
Ái Æ C

yi(—0 +
nÿ

j=1
–xT

i xj) Ø M(1 ≠ Ái).

Curious fact:
19

Gram matrix

ntxitnxisEEIIf

oniEid.ependsonPq.q.fi
Hi
FIgixjFxi

only depends on xFx ti j

The kernel trick finally

Suppose we knew a nice, high dimensional transformation
„ : Rn æ Rm, and we wanted to fit a linear SVM in that Rm

space to get better separation.

We would still only need the inner products in that higher
dimensional space!

What if we cheat? Can we just compute the inner products
directly, without ever forming the high-dimensional vectors?

20

Xi XD Xi Xz Xf Xz

0

XiXj in bigger space

XTXj measuring
how similar are
Xi Xj

We define a kernel function – just an inner product in a higher
dimensional space – which measures the similarity of two
observations. For example:

Linear kernel: K(xi, xiÕ) = qp
j=1 xijxiÕj is our usual inner product

Polynomial kernel: K(xi, xiÕ) =
1
1 + qp

j=1 xijxiÕj

2d

Radial kernel: K(xi, xiÕ) = exp
1
≠“

qp
j=1(xij ≠ xiÕj)2

2

All of these correspond to forming higher dimensional vectors by
transforming x, and then taking usual inner products. However, we
never need to actually form the vectors!

21

KG xD and returns a scalar

XiTxil4 tLxi.x
d

Radial Basisfn kernel expf taxi Xi

flow similar are Xi Xi'd

Example: Polynomial kernel of order 2

Suppose we observe points (x1, x2), but we want to work in the
space

(1,
Ô

2x1,
Ô

2x2,
Ô

2x1x2, x2
1, x2

2),

so that we can have quadratic boundaries. (Constants are just
chosen to make the math nice)

Compare taking inner products in the larger space to the kernel
K(x, y) = (1 + qp

i=1 xiyi)2

22

X

ITytCI.ray zyz.rzyikig.EEifIranoICx7SVM on xD
Yi

then learn
quadraticbdy

OIHTOILyt I 2xiyt2xikt2xixzyiktxfyf

e.tty57 CFxhave 3rdorder terms

We can look for good linear boundaries in the high dimensional
space (with no new math!), which will correspond to non-linear
boundaries in our new space.

(ISL pg. 353)

23

SVM
with
RBF

Svm withpolynomial
kernel

kernel

The end result can be quite flexible

(ESL pg. 21)
24

The end result can be quite flexible

(ESL pg. 425)
25

Best
possible
classifier

support
vectors

How should we think about this?

I Our hyperplane used to have the form:

‚f(x) = —0 +
nÿ

i=1
–ix

T
i x.

I Once we kernelize it has the form:

‚f(x) = —0 +
nÿ

i=1
–iK(xi, x).

Imagine we use an RBF kernel:

K(x, xÕ) = exp

Q

a≠“
pÿ

j=1
(xij ≠ xiÕj)2

R

b

This function is tiny if x and xÕ are far apart, so the classifier
is doing something quite intuitive – it is essentially ignoring
points that are far away from the point x – and only using
ones close by in making its classification decisions.

26

N

p Enix i
E I

replace with
kernels

if is
far from
then

Ktx x 1 0

Can we kernelize other linear classifiers (and regressors)?

I The short answer is yes.
I Lets see another example: suppose we wanted to kernelize

logistic regression. We would suppose that:

‚— =
nÿ

i=1
–ixi,

then our conditional probability just becomes:

P(Y = 1|X = x) = exp(—T x)
1 + exp(—T x) =

I So to kernelize it we would simply use:

P(Y = 1|X = x) =

and optimize the log-likelihood over the coe�cients –. This is
called kernel logistic regression.

27

exptaixifx

Hexp
ixi5x

E 4xi
Replace xifqgii.tt

SVM: a di�erent perspective

There is another important way of thinking about the linear SVM.
It turns out that we can re-write the optimization problem (its a
bit of work) as solving:

min
—

nÿ

i=1
(1 ≠ yif(xi))+ + ⁄

2 Î—Î2
2

This is like replacing 0-1 loss with a hinge function and adding a
ridge penalty to keep things regularized!

−1.0 −0.5 0.0 0.5 1.0 1.5 2.0

0.
0

1.
0

2.
0

3.
0

x

Lo
ss

(x
)

0−1 Loss
Exp loss
Hinge loss

28

ftp.txi ridge regularizer

__Hinge loss

Max l y ft D
T

hingeloss easy
to min

y ft
s

Empirical risk minimization

This general pattern:
1. We want to minimize:

E1{Y ”= f(X)}

2. And so we actually try to minimize its empirical version:

1
n

nÿ

i=1
1{yi ”= f(xi)}

3. But we can’t even do that for classification. So we introduce
a nicer loss L and minimize

1
n

nÿ

i=1
L(yi, f(xi))

The first two steps are known as empirical risk minimization. The
last step almost always follows for classification.

29

Empirical risk minimization

30

