Classification: Kernels and Decision Trees

Siva Balakrishnan
Data Mining: 36-462/36-662

February 14th, 2018

Chapter 8.1 - 8.2 of ISL (Decision Trees)

Recap: Soft-Margin SVM

» To overcome problems with the Hard-Margin SVM (can be
unstable, data may not be linearly separable) we introduced
slack variables to allow points to “violate the margin”.

Maximizewﬁo@ ¢; - Slack war.
p n
subject to 25]2 =1, ¢ >0, Zei <C

j=1 i=1)
yi(Bo + a7 B) = M(1 - &)

» When we solve this program the value of the slack variable

tells us where the point is: G|:. 0O) & 6 Coﬂ‘e_(';iﬁ dagdt.
Ei7L,x © mischafied. gt leost M aveyles

bounda
. < A IS o .
0<CE KL % & wrredly damgec' N
but outdde marg\n.
> The tuning parameter C'is critical. Increasing C', usually
increases bias and decreases variance. We typically choose it

by cross-validation. 2

Recap: The parameter

» One way to think about C' is to note that it is an upper bound
on the number of training errors.

» If we wantto understand its effect on bias and variance we
should recall:

=
3
<3
?

5> C ig gnall.

Recap: Kernels

SVMs give us a way to obtain a linear classifier with a large
margin. Suppose we want a non-linear classifier.

The usual answer is to use feature expansions, i.e. we take
our features and concatenate new features which are
combinations of existing features.

®((balance, income)) @O X i b2 i%)

e

A linear classifier in the expanded feature space is a non-linear
classifier in the original space.

Can be computationally very annoying — we have to create,
store and manipulate these much (much) larger feature
vectors.

Recap: Kernels

» |If the optimal hyper-plane was a linear combination of our
data-pojnts (it always is):
u .
2 (nnes s
’\, ." ? 6 — Z ;g
i=1

C g, SVMs could be written only in terms of inner products
@ or the training data (and of course the labels).

» To obtain the SVM classifier (after feature expansion) we do
not need to store the big feature vectors, we just need to be

able to compute their ippss=preducts quickly, i.e. we need
some way of computind ®(x)? ®(2) For pairs of training

examples.

Recap: Kernels

For many interesting, non-linear kernels, we can compute

®(2)T® () very easily using a kernel function:
& () B (z).
—————————
For example, suppose our original data is 2 dimensional, if we
choose a quadratic feature map (so we ca t|c
decision boundaries): ‘701“
() (1 \/7$1,\/;$2,$1,$2,\/7$1£L‘2

Instead of computing ®(z)” ®(x') by this feature exppnsion

we can see that this just corresponds to: i:nz ﬂeeJ fo
K(z,2') =1 +2T2)%

For higher-order polynomials we use the polynomial kerm]
K(z,2) = (1 +z'2)P.

Another popular kernel is the Radial Basis Function kernel:

K(z,2") = exp(—v[z — 2'[3).

Recap: Kernels Main Points

We can make linear classifiers non-linear by feature expansion.

Many classifiers only need inner products between the training
examples.

We can often compute inner-products between the feature
expanded training examples directly using kernels.

This gives us a way to quickly “non-linearize” (kernelize)
classifiers without having to carefully craft feature expansions.

Recap: How do we use kernel SVMs?

» When we run a kernel SVM package the coefficients

it returns to us are now 3y and «;, and our classification

function takes the form: St
PQ | P X .

504—2% (x5, x P

» To classify a new point: t QCX)) 0o
Oumruh (1) /3 lese S
o foogo.

non - mear ceacgr(ier

SVM: a different perspective

There is another important way of thinking about the linear SVM.
It turns out that we can re-write the optimization problem (its a

bit of work) aggolving: MIN logg + N 1

3& o A { Fowy rn

< A
min 3 (1 - af (20), + 51513
i=1 -
=L ~——5, oSS
This is like replacing 0-1 loss with a hinge functi ‘Ma

ridge penalty to keep things regularized! T
ik Y P % > 1.
| TEE] e no kS

g gﬁmo.
AT 44 \:”5&‘7].

Loss(x)
|

Empirical risk minimization
This general pattern:
1. We want to minimize:

E1{Y # f(X)}

2. And so we actually try to minimize its empirical version:

T > 5 min- e

LS 1 £ fl) "
n ; Z z | (+CS.

3. But we can't even do that for classification. So we introduce
a nicer loss L and minimize

P _— 1" uJ -
EZL(?J%JE(%))T ma an2ec

The first two steps are known as empirical risk minimization. The

last step almost always follows for classification.
10

Empirical risk minimization

- Misclassification
=== Exponential

- Binomial Deviance
== Squared Error
- Su ppon Vector

Q(‘uaves.

/

Loss
00 05 10 15 20 25 30
1

- Itq\:?n'c, felj««m

» What do you observe about all thes Iosses7

» Why is this a nice thmg’?—")
ﬁaue

S axp%ﬁ}

b g Ahar oL
/1 &(F N’:‘iﬁ“’s

Multiclass SVM

» Unlike logistic regression and LDA there is no particularly
natural way to take the (binary) SVM and use it in ul_t"—class

che 4 vk

settings.
» Two poqu c\a_o: K \I "
1. One-verSus-all cIassnclcat)mzwe fit K different SVMs

{(501 By ., (Box, Bx)} by comparing each class to all the
other classes —_
To finally classify a point we use: /)

A~

f(x) = arg ml?x B\Ok + ng

2. One-versus-one classification: Here we f'((%) ’ﬁfferent SVMs,
by comparing each class with every othe .

To classify a new test example: we classify it according to each
of the classifers and pick the class that is chosen most often.

12

Overview: Tree-based methods(:mc’ ""“‘Q‘g)

Tree-based based methods for predicting y from a feature vector
x € RP divide up the feature space into rectangles, and then fit a

@ry simple model in each rectangle? This works both when v is
discrete and continuous, i.e., both for classification and regressmn

4 Ca% \ X‘l)

. L o 45
% ' +1 —)E 'K-l‘l

x4
et =
(ineav %o% A ——\reeS are

o 8 TN h.
kol oS T T j’m

(ISL Figure 8.7)

This is a big shift from thinking about linear-style models! 13

148/0

39/0 0/71

PPN s 0.0 0.2 0.4 0.6 0.8 1.0

x1

This gives a rule that is easy to understand, easy to explain, and
easy to implement!

No more coefficients to interpret!

14

Classification trees

X1 <ty
t
Rs
Ro> ta
X2 <t2 X1 <t3 ™
> Ra
to Ry
X2 <ty Ry
Ry R R3
t1 t3
Ry Rs X1

The classification tree can be thought of as defining m regions
(rectangles) Ry, ... R,,, each corresponding to a leaf of the tree

We assign each R; a class label ¢; € {1,... K'}. We then classify a
new point x € R? by

m

Free(z) = ch -H{z e R;} = c¢jift veR;
j=1

\

15

Rs
RQ ta

X2

R3
to Ry

/ R
Ry R R3
t1 t3

R:i Rs X1

free(z) = Y ¢j-1{z € Ry}
j=1

Finding out which region a given point x belongs to is easy since
the regions R; are defined by a tree—we just scan down the tree.
Otherwise, it would be a lot harder (need to look at each region)

16

Estimated class probabilities

Note that each region R; contains some subset of the training
data (z;,v;), i =1,...n, say@)oints.

We have been predicting class ¢; using the most common class
among points in R;. -

For each class k, we can also estimate the probability that a point
has that class, given that it falls in R;, P(C = k| X € R') by

B(Ri) = — Y Uy =) "’ON& -

—— = % z,CR; T MM“’!MNN

the proportion of points in the region that are of class k.

We can even think of our predicted class as

@ argmax pi(R;)
k=1,. K o

17

How to build trees?

There are two main issues to consider in building a tree:

1. How to choose the splits?
2. How big to grow the tree? — how o not QUQVA‘)'

5 Clog & ﬁj- ~heeg

The CART Algorithm:

1. Choose splits greedily for best improvement at each step,
starting from the root.

2. Grow the tree very deep to avoid getting stuck locally

3. Prune the tree back to a reasonable size to reduce variance.

18

Recall that in a region R,,, the proportion of points in class & is
Pr(Rm) Z Wy = k}.
xzeRm

The CART algorithm begins by considering splitting on variable J
and split point@ and defines the regions

Ri={XeRP:X,;<s}, Ro={X eR:X;>s}

We then greedily chooses j, s by minimizing the misclassification

error /7 ‘% QJGCS

argmin (an 11 — Dey (R1)] + nRy |1 — Pey (R2)) %\‘_

J,S e,

Her@: argmaxy_; _ Pk(F21) is the most common class in R,
and ¢y = argmax,_; Pkr(It2) 15 the most common class in Ry

19

We now repeat this within each of the newly defined regions
R1, Ro. Again consider all variables and split points for each of
R1, Rs, greedily choosing the biggest improvement in
misclassification error.

How do we find the best split s?

Aren't there infinitely many to consider?

— infs =
P) \' uW\Sl(lﬂ

O”ﬁkmwﬁ

0.6 0.8
o
0.6 0.8

0.4
0.4

0.2
0.2

0.0
0.0

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0

20

S manner, we
will get a big tree Tp. Its leaves
define regions Ri,...R,,. We
then prune this tree, meaning that
we collapse some of its leaves into
the parent nodes

How should we decide how much to prune a tre
Lke 4 w2 Cwss —val odtm

What is weird about applying this here?

No sbvious ‘)&(AN\QXU
Deder trees L\' d\m.mt(&‘eavesonfdk@

D@er s are not Dery lmea\ﬂtan%

xiso but basiC

For any tree T, let |T'| denote its

Xa <t Xy <ts number of leaves. We define
|T|
Xz <ta ZnR 1 pcj)]‘*‘O{‘T’

e liminadi ng small

We seek the tree T' C Tjy that minimizes 'C, (7). It turns o hat!
this can be done by pruning the weakest leaf one at a time.

o ﬂ —H\/ 40 “redunce ariance

ea LS

Note that « is a tuning parameter, and a larger « yields a smaller
tree. CART picks a by 5- or 10-fold cross-validation

use CV f» Mermi e
“howo much —Fofpmvxem

Example: simple classification tree

Example: n =500, p =2, and K = 2. We ran CART:

24 o ° o |, o 00 o o0
o [ele] (o]
Rg go] © o 8 080 g
x2< Q.11 oo _ 50808 ° " oo o a
i o @ o © %) o %o
(L x1 >=d-4028 © o % ° g g o) o
© 0@ o 5 © & o
60/0 x2>=0.4993 X2< &l.598 o 6 © o © L 0o O & o % ©9%
o o] &t o o o o o
© 60 o . 0P & © %)oé% °o 8
o o of o o] 80 o %
[OFS) o o Y 0@
3 < 8o _b®, o o 0 %8
© oo o ° o © o o
o o odo °° o 0Q
N o o o 0o °0
< é—Q o® o@ 00 O o o
x1< 05998 Co 2% o ® 0% @
<« 5 @ 9%0° % oL % o % o
148/0 S o @ g og o °
®% S ® & ©0 o
o 00% 8% ol8co o 5 ©
° o &° 80 08 o} OOOO
« e (o} 0@8 o o o XS
o 7 © o0 ° o OO Y50 oo %" o o
o 0 00 o c 2 945 o
% o © ° o Bc o
[§) 3] [¢] [¢)
o 0 o o
R o o Q%o o b
0 o OOOO@O@CD oo %% @Oo ¢ %O%)
39/0 0/71 S © 7o o © o
0 T T T T T T
snain s 1.0

In R, can us¢ rpart)or tree

23

Example: spam data

Example: n = 4601 emails, of which 1813 are considered spam.
For each émail we have p = 58 attributes.

The first 54 features measure the frequencies of 54 key words or

characters (e.g., “$"). The last 3 measure

» the average length of uninterrupted sequences of capitals;
» the length of the longest uninterrupted sequence of capitals;

» the sum of lengths of uninterrupted sequences of capitals

(Data from ESL section 9.2.5)

24

Cross-validation error curve for the spam data (from ESL page

314):

Misclassification Rate

0.4

0.3

0.2

0.1

0.0

176 21 7
I N Y I

«

5 3 2

bllulull owvve CV enbr

pTANGL OMYUL ’kSLeG

vof

Tree Size

25

Tree of size 17, chosen by cross-validation (from ESL page 315):

00/153f

ch$<0.0555
ch$>0.0555

spam
807117 4
lernov9<(].0(‘> hp<0 405

rernov9>(].()(‘> hp>(] 405

p—\m p’nn
807106 97f1 26/33
(ll'<D 191 george<0.15 (APAVE<" o7

Lh'>0 191 george>0.15 CAPAVE>2.907

0 09
(APAVE< 505 1999<0 58

CAPAVE>2.7505 1999>0.58

g

hp<O. 03% [1ee<0 065

hp>D 03 f:ee>0 065

Z/42
CAPMAX<10.5 business<0.14p
PA Pl\[AX>lﬂ business>0.145

20/2 57/1'
2

receive<0.1 edu<0 045
receive>0.125 edu>0.045

b
48711
our<1.2
our>1.2

Note: The leaf annotations are a bit different here.

26

Other impurity measures

r

We used misclassification error as a measure ofpthe impuritycjf (.I
region R;, "C mE —asS™8
L0) 8y Ahan o pare

But there are other useful measures too: the Gini index: M(i?,(’ .
mal nom c\m|

K
> br(Ry)[1 — pr(Ry)],
k=1

and the cross-entropy or deviance: 0

« T3¢
— 2_ Pr(R)) log {Di(R;)}-
k=1

Using these measures instead of misclassification error is
sometimes preferable because they are more sensitive to changes i
class probabilities.

27

L
1
L N
q
Yy
y
>KR
. |

q
M
t‘t‘
1
\1
u
(1

3
2
3
Y u
Y
¥
Yy

(
&C '
on \
‘“
~—— M) \ :
M ‘
- ,
{9

0.5

0.4

0.3

0.2

0.1

0.0

Other impurity measures

0.0

0.2 0.4 0.6

0.8

1.0

28

Regression trees

Suppose that now we want to predict a continuous outcome
instead of a class label. Essentially, everything follows as before,
but now we just fit a constant inside each rectangle

29

The estimated regression function has the form

Free(s) = ch -1{z € R;} = c¢; such that © € R;
j=1

just as it did with classification. The quantities ¢; are no longer
predicted classes, but instead they are real numbers: the average
response within each region:

;= — i
U
:EiERj

The main difference in building the tree is that we use squared
error loss instead of misclassification error (or Gini index or
deviance) to decide which region to split.

30

Categorical predictors

» If a categorical predictor takes on ¢ different values then how

many splits do we have to consider?
5

31

Trees provide a good balance

Model Estimated 1, retable? | Flexible?
assumptions? | probabilities?
LDA Yes Yes Yes No
LR Yes Yes Yes No
k-NN No A bit Yes
Trees (No) Somewhat
" S—

N—————

No
7/

ma\/l)e,?

32

How well do trees predict?

Trees seem to have a lot of things going in the favor. So how is
their predictive ability?

Unfortunately, the answer is not great.

Trees tend to suffer from high variance because they are quite
unstable: a small change in the observed data can lead to a
dramatically different sequence of splits, and hence a different
prediction.

This instability comes from their greedy nature; once a split is
made, it is permanent and can never be “unmade” further down in
the tree

However, we will see that trees form the building blocks for some
very powerful predictive methods.

33

