
36-705: Intermediate Statistics Fall 2019

Lecture 13: September 27
Lecturer: Siva Balakrishnan

Before we turn our attention to estimation more formally, we are going to take one final
detour through what are called exponential families. Exponential family distributions possess
many useful and pleasant properties, and give us a somewhat unified way to think about
“nice” distributions.

Good references for this material (since it has not been taught in the last few versions of
this course) include Chapter 3 of Martin Wainwright and Michael Jordan’s monograph on
exponential families, and Lehmann and Casella’s Theory of Point Estimation book.

13.1 Exponential Families - Canonical Parametrization

A family {Pθ} of distributions forms an s-dimensional exponential family if the distributions
Pθ have densities of the form:

p(x; θ) = exp

[
s∑
i=1

ηi(θ)Ti(x)− A(θ)

]
h(x),

where ηi, A are functions which map θ to R, and the Ti(x) are known as the sufficient statistics
(it should be clear to you why this is). The term A(θ) is known as the log-normalization
constant or the log-partition function (the former terminology will be clearer in a second).
We will assume that x ∈ X , where X is just some set.

As a technical note, exponential families can be defined with respect to the Lebesgue measure
(as we did implicitly above) or with respect to any other measure (for instance, the discrete
measure on {1, . . . , k}). We will continue to simply think of X as a subset of R and the
measure as the Lebesgue measure.

Although thinking of the above form is standard, it is usually much more convenient to
parametrize the distribution in what is known as its canonical parametrization, where we
simply take ηi(θ) to be the parameters. In this case, we can more compactly write:

p(x; θ) = exp

[
s∑
i=1

θiTi(x)− A(θ)

]
h(x).

In this case, we refer to θ as the natural parameters of the distribution. Notice that none of
these parametrizations are unique, we can replace Ti by cTi and θi by θi/c and obtain the
same distribution.

13-1



13-2 Lecture 13: September 27

The term A(θ) is what makes the distribution integrate to 1, i.e.

A(θ) = log

[∫
X

exp

[
s∑
i=1

θiTi(x)

]
h(x)dx

]
.

The set of θs for which A(θ) <∞ constitute the natural parameter space.

Several distributions you have or will encounter are exponential family distributions (Wikipedia
has a long list). We will do a couple of examples here.

Example 1: The Normal family of distributions has density,

p(x; θ) =
1√

2πσ2
exp

(
µ

σ2
x− 1

2σ2
x2 − µ2

2σ2

)
,

which is a 2-parameter exponential family, with natural parameters (θ1, θ2) =
(
µ
σ2 ,

−1
2σ2

)
, and

sufficient statistics (x, x2). One can verify that the natural parameter space is R× (−∞, 0).

Discrete distributions can similarly belong to an exponential family (you have to replace all
the integrals with sums and so on).

Example 2: The Binomial distribution has pmf,

p(x; θ) =

(
n

x

)
px(1− p)n−x, x ∈ {0, 1, . . . , n}.

We can re-write this as:

p(x; θ) =

(
n

x

)
exp

(
x log

p

1− p
+ n log(1− p)

)
, x ∈ {0, 1, . . . , n}.

This shows that it is in an exponential family with sufficient statistic x (number of successes),
and natural parameter,

θ = log

(
p

1− p

)
.

Example 3: The Poisson(λ) distribution has pmf,

p(x; θ) =
exp(−λ)λx

x!
=

1

x!
exp(x log λ− λ),

which shows that it is an exponential family with sufficient statistic x, and natural parameter
θ = log(λ).

If you have not seen these before, Wikipedia has a long list of exponential family distributions,
their natural parameters, sufficient statistics and other useful information. It is good practice
to try to derive the natural parameters for some popular distributions.
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13.2 Properties of Exponential Families

13.2.1 Random sampling

The exponential family structure is preserved for an i.i.d. sample, i.e. if {X1, . . . , Xn} are
i.i.d from some exponential family distribution p(x; θ) then the joint distribution:

p(x1, . . . , xn; θ) =
n∏
i=1

h(xi) exp

[
s∑
i=1

θi

n∑
j=1

Ti(xj)− nA(θ)

]
,

is in an exponential family with the same natural parameters but with sufficient statistics:

Ti(x1, . . . , xn) =
n∑
j=1

Ti(xj).

13.2.2 Log-partition generates moments

Recall that,

A(θ) = log

[∫
X

exp

[
s∑
i=1

θiTi(x)

]
h(x)dx

]
,

so taking the derivatives of A with respect to θ we obtain that,

∂A(θ)

∂θi
=

∫
X Ti(x) exp [

∑s
i=1 θiTi(x)]h(x)dx[∫

X exp [
∑s

i=1 θiTi(x)]h(x)dx
]

= E[Ti(X)].

You might wonder why we can switch derivatives and integrals - this is done rigorously using
the dominated convergence theorem. Similarly, you can easily verify that higher derivatives
lead to (functions of) higher moments (technically cumulants and not moments but you can
look up the distinction), i.e.

∂2A(θ)

∂θi∂θj
= E[(Ti(X)− E[Ti(X)])(Tj(X)− E[Tj(X)])] = cov(Ti(X), Tj(X)).

This is why the function A(θ) is classically known as the cumulant function.

This latter property also reveals that A is a convex function of θ, i.e. it is bowl-shaped.
Convexity is implied by the fact that the second-derivative matrix (i.e. the Hessian matrix)
is positive semi-definite. For exponential families, the Hessian matrix is the covariance matrix
of the sufficient statistics Ti, and covariance matrices are always positive semi-definite. If
this did not make sense ignore it but remember the conclusion: A is a convex function of θ.
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13.2.3 The likelihood function in exponential families

When we observe a random sample X1, . . . , Xn ∼ p(X; θ) from an exponential family distri-
bution, the log-likelihood function is simply:

LL(θ;x1, . . . , xn) ∝

[
s∑
i=1

θi

n∑
j=1

Ti(xj)− nA(θ)

]
.

The log-likelihood function in an exponential family is concave. To see this just compute
the Hessian of LL(θ;x1, . . . , xn) and observe that this is simply −n times the Hessian of A.
Since A is convex, its negation is concave.

13.2.4 Minimal representations and minimal sufficiency

An exponential family representation is said to be minimal if the sufficient statistics are not
redundant, i.e. there is no set of coefficients a ∈ Rs, a 6= 0 such that,

s∑
i=1

aiTi(x) = const,

for all x ∈ X . If the representation is not minimal then essentially one can eliminate some
of the sufficient statistics from the representation to obtain a minimal representation. Non-
minimal exponential families are sometimes called over-complete exponential families. Over-
complete exponential families are not statistically identifiable (while minimal ones are), i.e.
there can be two different parameter vectors θ1 6= θ2, such that, p(X; θ1) = p(X; θ2). This
effectively means, even if I gave you infinite data from the model, you cannot meaningfully
estimate the parameter θ.

An exponential family where the spaced of allowed parameters θi is s-dimensional is called
a full-rank family. On the other hand if there are relationships between the θi (for instance,
θ2 = θ21) then the exponential family is curved.. For a full-rank exponential family, the
sufficient statistics turn out to be minimal sufficient, i.e. the statistic

T (X1, . . . , Xn) =

(
n∑
i=1

T1(Xi), . . . ,
n∑
i=1

Ts(Xi)

)
,

is minimal sufficient.

13.2.5 The mean parameterization

You should skip this section unless exponential families really piqued you curiosity (in which
case, you should really read some of the references).
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We have been discussing the canonical parametrization of exponential families. It turns
out that an equivalent way to parameterize the distribution is via what are called its mean
parameters. We will not show this equivalence (it is not difficult) but rather just introduce
the terminology here.

Suppose we define:

µi = E[Ti(X)] =

∫
x∈X

Ti(x) exp

[
s∑
i=1

ηi(θ)Ti(x)− A(θ)

]
h(x)dx,

then it turns out that the collection (µ1, . . . , µs) is in 1-1 correspondence with the natural
parameters of the exponential family.

The estimation problem (i.e. given samples from p(X; θ) trying to figure out θ) can be
viewed as trying to find the natural parameters given the mean parameters. More broadly,
if you take a graphical models class you might learn that many tasks in exponential families
(computing probabilities etc.) can be framed as trying to map between natural and mean
parameters.

13.2.6 The maximum entropy duality

The classical motivation for exponential families comes from what is called the principle
of maximum entropy. The idea is that, we suppose that we are given a random sample
{X1, . . . , Xn} from some distribution, and we compute the empirical expectations of certain
functions that we choose:

µ̂i =
1

n

n∑
j=1

Ti(Xj) for i ∈ {1, . . . , s}.

For simplicity, you could imagine the case when T (X) = (X,X2, . . . , Xs), i.e. where the
statistics we are interested in are just moments, but everything we are discussing is much
more general. Based on just these empirical expectations we want to infer a full probability
distribution on the samples. A distribution p is consistent with the data we observe if it is
the case that,

µ̂i = Ep[Ti(X)] for i ∈ {1, . . . , s}.

We of course would like to pick a consistent distribution. It turns out that in most interesting
cases, if we constrain a small number of statistics in this fashion there are infinitely many
consistent distributions, so we need to come up with a way to choose between them.

The principle of maximum entropy suggests to pick the distribution that has the largest
(Shannon) entropy. The entropy of a distribution is:

H(p) = −
∫
x∈X

p(x) log(p(x))dx.
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Roughly, the entropy measures the complexity of a distribution (i.e. the average number of
bits needed to encode samples from a distribution). The principle of maximum entropy says
that one should be “maximally agnostic” about all aspects of the distribution that are not
explicitly constrained. If this does not make sense, then just think about the principle as
giving a possibly “natural” way to choose a distribution from a collection.

So we could imagine trying to find the distribution p∗ that,

p∗ = arg max
p
H(p)

subject to the constraints that,

µ̂i = Ep[Ti(X)] for i ∈ {1, . . . , s}.

The solution to this problem can be computed using the calculus of variations, and is al-
ways an exponential family distribution, i.e. there exist some parameters θ such that the
distribution p∗ has the form:

p∗(x) = exp

[
s∑
i=1

θiTi(x)− A(θ)

]
h(x).

In this case, the θi are what are called Lagrange parameters. They are equivalent to the
maximum likelihood estimates for the parameters of this distribution (we will see what this
means in a little bit).

The main take home is that an alternate way to think about exponential families, is that they
arise naturally from trying to constrain a few simple statistics of a distribution using the data
and then choosing a distribution that maximizes the entropy subject to those constraints.

13.2.7 Bregman Divergences and KL Divergences

Given a (strictly) convex function A we can define a divergence between points by:

ρ(θ1, θ2) = A(θ2)− A(θ1)− 〈A(θ1), θ2 − θ1〉.

For a pair of distributions we can define the KL divergence (assuming everything below is
finite):

KL(p||q) =

∫
p(x) log(p(x)/q(x))dx.

It is easy to see that for exponential families – the Bregman divergence between parameters
(using the log-partition as the convex function) is exactly equal to the KL divergence between
the corresponding distributions.
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13.2.8 Parameter Estimation - Maximum Likelihood and the Method
of Moments

This will be something we will much more slowly, but lets try to understand the main ideas
here in the context of exponential families.

One of the dominant strategies of parameter estimation is to compute a value of the param-
eter that maximizes the likelihood of the observed data. We have seen that the likelihood in
an exponential family is concave and given by

LL(θ;x1, . . . , xn) ∝

[
s∑
i=1

θi

n∑
j=1

Ti(xj)− nA(θ)

]
,

so we can simply take the derivative with respect to θ and set this equal to 0. Using the
facts we have seen earlier about the derivative of A, we can see that this amounts to solving
the following system of equations for θ:

Ep(X;θ)[Ti(X)] =
1

n

n∑
j=1

Ti(xj) for i ∈ {1, . . . , s}.

So the maximum likelihood estimator simply picks the parameters θ to match the empirical
expectations of the sufficient statistics to the expected value of the sufficient statistics under
the distribution.

Usually we cannot compute this estimator in closed form so we use an iterative algorithm (like
gradient ascent) to maximize the likelihood. However, you should remember that exponential
families have concave likelihoods so this is usually a tractable endeavour (at least for simple
enough families).

The alternative way to estimate parameters of a distribution is known as the method of
moments. Here the idea is to pick some statistics of the data, and the try to find parameters
for your distribution so that the empirical average of the statistics are equal to their expected
values under the estimated model. For exponential families as we can see above these two
methods of estimation coincide.


