
36-705: Intermediate Statistics Fall 2019

Lecture 14: September 30
Lecturer: Siva Balakrishnan

Today we will discuss point estimation, i.e. the task is given X1, . . . , Xn ∼ p(X; θ) we would

like to construct an estimator θ̂(X1, . . . , Xn). The rationale for the task is simple – it is
closely related to the central preoccupation of Statistics/ML – we would like to understand
the population given a random sample, i.e. we want to understand p(X; θ) and one way to
do this is to estimate θ. In some cases, θ has some natural meaning (maybe it is the mean
of the population) but this is not necessarily the case.

In the next few lectures we will discuss ways to construct estimators and then how to compare
or evaluate them. Roughly, the questions we are trying to answer are:

1. Are there general purpose methods to come up with estimators of θ?

2. Given two (or more) estimators is there a general framework in which we can compare
estimators?

3. Finally, are there general purpose ways to analyze complex estimators (say estimators
that are not simple averages)?

As a small point – we usually use “estimator” to refer to a random variable (a statistic,
a function of the sample) and “estimate” to refer to its realized value. We have already
studied estimation in a relatively simple context in great detail, given a sample, we aimed
at estimating the mean of the population. When θ is not a simple mean then we need to
think a bit harder to decide how to estimate it. We will focus on general purpose methods
for estimation.

X1, . . . , Xn ∼ p(x; θ). Want to estimate θ = (θ1, . . . , θk). An estimator

θ̂ = θ̂n = w(X1, . . . , Xn)

is a function of the data. Keep in mind that the parameter is a fixed, unknown constant.
The estimator is a random variable.

For now, we will discuss three methods of constructing estimators:

1. The Method of Moments (MOM)

2. Maximum likelihood (MLE)

3. Bayesian estimators.
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14.1 The Method of Moments

Suppose that θ = (θ1, . . . , θk). Define

m1 =
1

n

n∑
i=1

Xi, µ1(θ) = E(Xi)

m2 =
1

n

n∑
i=1

X2
i , µ2(θ) = E(X2

i )

...
...

mk =
1

n

n∑
i=1

Xk
i , µk(θ) = E(Xk

i ).

Let θ̂ = (θ̂1, . . . , θ̂k) solve:

mj = µj(θ̂), j = 1, . . . , k.

In other words, we equate the first k sample moments with the first k theoretical moments.
This defines k equations with k unknowns.

Example 14.1 N(β, σ2) with θ = (β, σ2). Then µ1 = β and µ2 = σ2 + β2. Equate:

1

n

n∑
i=1

Xi = β̂,
1

n

n∑
i=1

X2
i = σ̂2 + β̂2

to get

β̂ = Xn, σ̂2 =
1

n

n∑
i=1

(Xi −Xn)2.

Example 14.2 Suppose
X1, . . . , Xn ∼ Binomial(k, p)

where both k and p are unknown. We get

kp = Xn,
1

n

n∑
i=1

X2
i = kp(1− p) + k2p2

giving

p̂ =
Xn

k
, k̂ =

X
2

n

Xn − 1
n

∑
i(Xi −Xn)2

.
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The method of moments was popular many years ago because it is often easy to compute.
Lately, it has attracted attention again. For example, there is a large literature on estimating
“mixtures of Gaussians” using the method of moments.

14.2 Maximum Likelihood

The most popular method for estimating parameters is maximum likelihood. One of the
reasons is that, under certain conditions, the maximum likelihood estimator is optimal.
We’ll discuss optimality later.

The maximum likelihood estimator (mle) θ̂ is defined as the maximizer of

L(θ) = p(X1, . . . , Xn; θ)
iid
=

∏
i

p(Xi; θ).

This is the same as maximizing the log-likelihood

LL(θ) = logL(θ).

Often it suffices to solve
∂LL(θ)

∂θj
= 0, j = 1, . . . , k.

Example 14.3 Binomial. L(p) =
∏

i p
Xi(1− p)1−Xi = pS(1− p)n−S where S =

∑
iXi. So

LL(p) = S log p+ (n− S) log(1− p)

and p̂ = Xn.

Example 14.4 X1, . . . , Xn ∼ N(µ, 1).

L(µ) ∝
∏
i

e−(Xi−µ)2/2 ∝ e−n(Xn−µ)2 , LL(µ) = −n
2

(Xn − µ)2

and µ̂ = Xn. For N(µ, σ2) we have

L(µ, σ2) ∝
∏
i

1

σ
exp

{
− 1

2σ2

n∑
i=1

(Xi − µ)2

}
and

LL(µ, σ2) = −n log σ − 1

2σ2

n∑
i=1

(Xi − µ)2.
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Set
∂LL
∂µ

= 0,
∂LL
∂σ2

= 0

to get

µ̂ =
1

n

n∑
i=1

Xi, σ̂2 =
1

n

n∑
i=1

(Xi −X)2.

Example 14.5 Let X1, . . . , Xn ∼ Uniform(0, θ). Then

L(θ) =
1

θn
I(θ > X(n))

and so θ̂ = X(n).

What is the method of moments estimator above? Can you do a back of the envelope
computation to compare the two estimators?

14.2.1 MLE and MoM for exponential families

The log-likelihood in an exponential family is concave and given by

LL(θ;x1, . . . , xn) ∝

[
s∑
i=1

θi

n∑
j=1

Ti(xj)− nA(θ)

]
,

so we can simply take the derivative with respect to θ and set this equal to 0. Using the
facts we have seen in the last lecture about the derivative of A, we can see that this amounts
to solving the following system of equations for θ:

Ep(X;θ)[Ti(X)] =
1

n

n∑
j=1

Ti(xj) for i ∈ {1, . . . , s}.

So the maximum likelihood estimator simply picks the parameters θ to match the empirical
expectations of the sufficient statistics to the expected value of the sufficient statistics under
the distribution.

Usually we cannot compute this estimator in closed form so we use an iterative algorithm (like
gradient ascent) to maximize the likelihood. However, you should remember that exponential
families have concave likelihoods so this is usually a tractable endeavour (at least for simple
enough families).

For exponential families as we can see above the method of moments coincides with the MLE
(if we chose the sufficient statistics to direct which moments to compute).



Lecture 14: September 30 14-5

14.2.2 Equivariance and the profile likelihood

Suppose that θ = (η, ξ). The profile likelihood for η is defined by

L(η) = sup
ξ
L(η, ξ).

To find the mle of η we can proceed in two ways. We could find the overall mle θ̂ = (η̂, ξ̂).

The mle for η is just the first coordinate of (η̂, ξ̂). Alternatively, we could find the maximizer
of the profile likelihood. These give the same answer. Do you see why?

The mle is equivariant. if η = g(θ) then η̂ = g(θ̂). Suppose g is invertible so η = g(θ) and
θ = g−1(η). Define L∗(η) = L(θ) where θ = g−1(η). So, for any η,

L∗(η̂) = L(θ̂) ≥ L(θ) = L∗(η)

and hence η̂ = g(θ̂) maximizes L∗(η). For non invertible functions this is still true if we
define

L∗(η) = sup
θ:g(θ)=η

L(θ).

(In other words, the profile likelihood.)

Example 14.6 Binomial. The mle is p̂ = Xn. Let ψ = log(p/(1−p)). Then ψ̂ = log(p̂/(1−
p̂)).

14.3 Bayes Estimator

To define the Bayes estimator, we begin by treating θ as a random variable. This point
requires much discussion (which we will have later). For now, just tentatively think of θ as
random. We start with a prior distribution p(θ) on θ. Note that

p(x1, . . . , xn|θ)p(θ) = p(x1, . . . , xn, θ).

Now compute the posterior distribution by Bayes’ theorem:

p(θ|x1, . . . , xn) =
p(x1, . . . , xn|θ)p(θ)
p(x1, . . . , xn)

where

p(x1, . . . , xn) =

∫
p(x1, . . . , xn|θ)p(θ)dθ.
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This can be written as

p(θ|x1, . . . , xn) ∝ L(θ)p(θ) = Likelihood × prior.

Now compute a point estimator from the posterior. For example:

θ̂ = E(θ|x1, . . . , xn) =

∫
θp(θ|x1, . . . , xn)dθ =

∫
θp(x1, . . . , xn|θ)p(θ)dθ∫
p(x1, . . . , xn|θ)p(θ)dθ

.

Example 14.7 Let X1, . . . , Xn ∼ Bernoulli(θ). Let the prior be θ ∼ Beta(α, β). Hence

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1,

and

Γ(α) =

∫ ∞
0

tα−1e−tdt.

Set Y =
∑

iXi. Then

p(θ|X) ∝ θY (1− θ)n−Y︸ ︷︷ ︸
likelihood

× θα−1(1− θ)β−1︸ ︷︷ ︸
prior

∝ θY+α−1(1− θ)n−Y+β−1.

Therefore, θ|X ∼ Beta(Y + α, n− Y + β). The Bayes estimator is

θ̃ =
Y + α

(Y + α) + (n− Y + β)
=

Y + α

α + β + n
= (1− λ)θ̂mle + λ θ

where

θ =
α

α + β
, λ =

α + β

α + β + n
.

This is an example of a conjugate prior.

Example 14.8 Let X1, . . . , Xn ∼ N(µ, σ2) with σ2 known. Let µ ∼ N(m, τ 2). Then

E(µ|X) =
τ 2

τ 2 + σ2

n

Xn +
σ2

n

τ 2 + σ2

n

m

and

Var(µ|X) =
σ2τ 2/n

τ 2 + σ2

n

.


