
36-705: Intermediate Statistics Fall 2019

Lecture 16: October 4
Lecturer: Siva Balakrishnan

In the last lecture we discussed the MSE and the bias-variance decomposition. We discussed
briefly that finding uniformly optimal estimators (i.e. estimators with lowest possible MSE
for every value of the unknown parameter) is hopeless, and then briefly discussed finding
optimal unbiased estimators.

We then introduced some quantities: the score and the Fisher information, and used these
notions to discuss the Cramér-Rao bound, which provides a lower bound on the variance of
any unbiased estimator.

You might come across this terminology in your research: estimators that achieve the
Cramér-Rao bound, i.e. are unbiased and achieve the Cramér-Rao lower bound on the
variance, are often called efficient estimators. In many problems efficient estimators do not
exist, and we often settle for a weaker notion of asymptotic efficiency, i.e. efficient but only
as n→∞. Next week, we will show that in many cases the MLE is asymptotically efficient.

The Cramér-Rao bound suggests that the MSE in a parametric model typically scales as
1/(nI1(θ)). In essence 1/I1(θ) behaves like the variance (we will see this more clearly in the
future), so that the MSE behaves as σ2/n, which is exactly analogous to what we have seen
before with averages (think back to Chebyshev/sub-Gaussian tail bounds).

Supposing that the Fisher information is non-degenerate, i.e. that I1(θ) > 0, and treating
the model and θ as fixed: I1(θ) is a constant as n → ∞. In such “nice” cases, the MSE
converges to 0 at the rate of 1/n. This is often referred to as the parametric rate. We will in
later lectures discuss non-parametric models where the typical rate of convergence is much
slower (and depends more drastically on the dimension of the model – this is called the curse
of dimensionality).

16.1 Decision Theory

Suppose we want to estimate a parameter θ using data Xn = (X1, . . . , Xn). What is the

best possible estimator θ̂ = θ̂(X1, . . . , Xn) of θ? Decision theory provides a framework for
answering this question.
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16.1.1 The Risk Function

Let θ̂ = θ̂(Xn) be an estimator for the parameter θ ∈ Θ. We start with a loss function

L(θ, θ̂) that measures how good the estimator is. For example:

L(θ, θ̂) = (θ − θ̂)2 squared error loss,

L(θ, θ̂) = |θ − θ̂| absolute error loss,

L(θ, θ̂) = |θ − θ̂|p Lp loss,

L(θ, θ̂) = 0 if θ = θ̂ or 1 if θ 6= θ̂ zero–one loss,

L(θ, θ̂) = I(|θ̂ − θ| > c) large deviation loss,

L(θ, θ̂) =
∫

log
(
p(x; θ)

p(x; θ̂)

)
p(x; θ)dx Kullback–Leibler loss.

If θ = (θ1, . . . , θk) is a vector then some common loss functions are

L(θ, θ̂) = ‖θ − θ̂‖2 =
k∑

j=1

(θ̂j − θj)2,

L(θ, θ̂) = ‖θ − θ̂‖p =

(
k∑

j=1

|θ̂j − θj|p
)1/p

.

When the problem is to predict a Y ∈ {0, 1} based on some classifier h(x) a commonly used
loss is

L(Y, h(X)) = I(Y 6= h(X)).

For real valued prediction a common loss function is

L(Y, Ŷ ) = (Y − Ŷ )2.

The risk of an estimator θ̂ is

R(θ, θ̂) = Eθ
(
L(θ, θ̂)

)
=

∫
L(θ, θ̂(x1, . . . , xn))p(x1, . . . , xn; θ)dx. (16.1)

When the loss function is squared error, the risk is just the MSE (mean squared error):

R(θ, θ̂) = Eθ(θ̂ − θ)2 = Varθ(θ̂) + bias2. (16.2)

If we do not state what loss function we are using, assume the loss function is squared error.
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Figure 16.1: Comparing two risk functions. Neither risk function dominates the other at all
values of θ.

16.1.2 Comparing Risk Functions

To compare two estimators, we compare their risk functions. However, this does not provide
a clear answer as to which estimator is better. Consider the following examples.

Example 16.1 Let X ∼ N(θ, 1) and assume we are using squared error loss. Consider

two estimators: θ̂1 = X and θ̂2 = 3. The risk functions are R(θ, θ̂1) = Eθ(X − θ)2 = 1

and R(θ, θ̂2) = Eθ(3 − θ)2 = (3 − θ)2. If 2 < θ < 4 then R(θ, θ̂2) < R(θ, θ̂1), otherwise,

R(θ, θ̂1) < R(θ, θ̂2). Neither estimator uniformly dominates the other; see Figure 16.1.

Example 16.2 Let X1, . . . , Xn ∼ Bernoulli(p). Consider squared error loss and let p̂1 = X.
Since this has zero bias, we have that

R(p, p̂1) = Var(X) =
p(1− p)

n
.

Another estimator is

p̂2 =
Y + α

α + β + n
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Figure 16.2: Risk functions for p̂1 and p̂2 in Example 16.2. The solid curve is R(p̂1). The
dotted line is R(p̂2).

where Y =
∑n

i=1 Xi and α and β are positive constants.1 Now,

R(p, p̂2) = Varp(p̂2) + (biasp(p̂2))2

= Varp

(
Y + α

α + β + n

)
+

(
Ep
(

Y + α

α + β + n

)
− p
)2

=
np(1− p)

(α + β + n)2
+

(
np+ α

α + β + n
− p
)2

.

Let α = β =
√
n/4. The resulting estimator is

p̂2 =
Y +

√
n/4

n+
√
n

and the risk function is

R(p, p̂2) =
n

4(n+
√
n)2

.

The risk functions are plotted in Figure 16.2. As we can see, neither estimator uniformly
dominates the other.

These examples highlight the need to be able to compare risk functions. To do so, we need a
one-number summary of the risk function. Two such summaries are the maximum risk and
the Bayes risk.

1This is the posterior mean using a Beta (α, β) prior.
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The maximum risk is
R(θ̂) = sup

θ∈Θ
R(θ, θ̂) (16.3)

and the Bayes risk under prior π is

Bπ(θ̂) =

∫
R(θ, θ̂)π(θ)dθ. (16.4)

Example 16.3 Consider again the two estimators in Example 16.2. We have

R(p̂1) = max
0≤p≤1

p(1− p)
n

=
1

4n

and
R(p̂2) = max

p

n

4(n+
√
n)2

=
n

4(n+
√
n)2

.

Based on maximum risk, p̂2 is a better estimator since R(p̂2) < R(p̂1). However, when n is
large, R(p̂1) has smaller risk except for a small region in the parameter space near p = 1/2.
Thus, many people prefer p̂1 to p̂2. This illustrates that one-number summaries like the
maximum risk are imperfect.

These two summaries of the risk function suggest two different methods for devising estima-
tors: choosing θ̂ to minimize the maximum risk leads to minimax estimators; choosing θ̂ to
minimize the Bayes risk leads to Bayes estimators.

An estimator θ̂ that minimizes the Bayes risk is called a Bayes estimator. That is,

Bπ(θ̂) = inf
θ̃
Bπ(θ̃) (16.5)

where the infimum is over all estimators θ̃. An estimator that minimizes the maximum risk
is called a minimax estimator. That is,

sup
θ
R(θ, θ̂) = inf

θ̃
sup
θ
R(θ, θ̃) (16.6)

where the infimum is over all estimators θ̃. We call the right hand side of (16.6), namely,

Rn ≡ Rn(Θ) = inf
θ̂

sup
θ∈Θ

R(θ, θ̂), (16.7)

the minimax risk. Statistical decision theory has two goals: determine the minimax risk
Rn and find an estimator that achieves this risk.

Once we have found the minimax risk Rn we want to find the minimax estimator that
achieves this risk:

sup
θ∈Θ

R(θ, θ̂) = inf
θ̂

sup
θ∈Θ

R(θ, θ̂). (16.8)
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16.1.3 Bayes Estimators

Let π be a prior distribution. After observing Xn = (X1, . . . , Xn), the posterior distribution
is, according to Bayes’ theorem,

P(θ ∈ A|Xn) =

∫
A
p(X1, . . . , Xn|θ)π(θ)dθ∫

Θ
p(X1, . . . , Xn|θ)π(θ)dθ

=

∫
A
L(θ)π(θ)dθ∫

Θ
L(θ)π(θ)dθ

(16.9)

where L(θ) = p(xn; θ) is the likelihood function. The posterior has density

π(θ|xn) =
p(xn|θ)π(θ)

m(xn)
(16.10)

where m(xn) =
∫
p(xn|θ)π(θ)dθ is the marginal distribution of Xn. Define the posterior

risk of an estimator θ̂(xn) by

r(θ̂|xn) =

∫
L(θ, θ̂(xn))π(θ|xn)dθ. (16.11)

Theorem 16.4 The Bayes risk Bπ(θ̂) satisfies

Bπ(θ̂) =

∫
r(θ̂|xn)m(xn) dxn. (16.12)

Let θ̂(xn) be the value of θ that minimizes r(θ̂|xn). Then θ̂ is the Bayes estimator.

Proof:

Let p(x, θ) = p(x|θ)π(θ) denote the joint density of X and θ. We can rewrite the Bayes risk
as follows:

Bπ(θ̂) =

∫
R(θ, θ̂)π(θ)dθ =

∫ (∫
L(θ, θ̂(xn))p(x|θ)dxn

)
π(θ)dθ

=

∫ ∫
L(θ, θ̂(xn))p(x, θ)dxndθ =

∫ ∫
L(θ, θ̂(xn))π(θ|xn)m(xn)dxndθ

=

∫ (∫
L(θ, θ̂(xn))π(θ|xn)dθ

)
m(xn) dxn =

∫
r(θ̂|xn)m(xn) dxn.

If we choose θ̂(xn) to be the value of θ that minimizes r(θ̂|xn) then we will minimize the

integrand at every x and thus minimize the integral
∫
r(θ̂|xn)m(xn)dxn.

Now we can find an explicit formula for the Bayes estimator for some specific loss functions.
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Theorem 16.5 If L(θ, θ̂) = (θ − θ̂)2 then the Bayes estimator is

θ̂(xn) =

∫
θπ(θ|xn)dθ = E(θ|X = xn). (16.13)

If L(θ, θ̂) = |θ− θ̂| then the Bayes estimator is the median of the posterior π(θ|xn). If L(θ, θ̂)
is zero–one loss, then the Bayes estimator is the mode of the posterior π(θ|xn).

Proof:

We will prove the theorem for squared error loss. The Bayes estimator θ̂(xn) minimizes

r(θ̂|xn) =
∫

(θ− θ̂(xn))2π(θ|xn)dθ. Taking the derivative of r(θ̂|xn) with respect to θ̂(xn) and

setting it equal to zero yields the equation 2
∫

(θ − θ̂(xn))π(θ|xn)dθ = 0. Solving for θ̂(xn)
we get 16.13.

Example 16.6 Let X1, . . . , Xn ∼ N(µ, σ2) where σ2 is known. Suppose we use a N(a, b2)
prior for µ. The Bayes estimator with respect to squared error loss is the posterior mean,
which is

θ̂(X1, . . . , Xn) =
b2

b2 + σ2

n

X +
σ2

n

b2 + σ2

n

a. (16.14)


