
36-705: Intermediate Statistics Fall 2019

Lecture 17: October 7
Lecturer: Siva Balakrishnan

In the last lecture we discussed Bayes estimators and minimax estimators which are optimal
from different standpoints. Minimax estimators have lowest maximum risk, which Bayes
estimators have lowest average (with respect to a distribution π(θ)) risk.

We then discussed that Bayes estimators are often easy to compute: for instance for the
squared-loss the posterior mean is the Bayes estimator. On the other hand, the minimax
estimator is often difficult to compute directly.

We will study two ways in which to use Bayes estimators to find minimax estimators. One
involves tightly bounding the minimax risk and the other involves identifying what is called
a least favorable prior.

It is worth keeping in mind the trade-off: Bayes estimators although easy to compute are
somewhat subjective (in that they depend strongly on the prior π). Minimax estimators
although more challenging to compute are not subjective, but do have the drawback that
they are protecting against the worst-case which might lead to pessimistic conclusions, i.e.
the minimax risk might be much higher than the Bayes risk for a “nice” prior.

In 36-708/10-716/. . ., you will learn about ways to achieve a relaxed goal of computing
estimators that achieve the minimax rate, i.e. estimators for which the risk goes to zero at
the same rate as the minimax estimator. Formally,

sup
θ∈Θ

R(θ, θ̂) � inf
θ̃

sup
θ∈Θ

R(θ, θ̃) n→∞ (17.1)

where an � bn means that both an/bn and bn/an are both bounded as n→∞.

17.1 Minimax Estimators through Bayes Estimators

Our goal is to compute a minimax estimator θ̂ that satisfies:

sup
θ∈Θ

R(θ, θ̂) ≤ inf
θ̃

sup
θ∈Θ

R(θ, θ̃).

We will let θminimax denote a minimax estimator.

17.1.1 Bounding the Minimax Risk

One strategy to find the minimax estimator is by finding (upper and lower) bounds on the
minimax risk that match. Then the estimator that achieves the upper bound is a minimax
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estimator.

Upper bounding the minimax risk is straightforward. Given an estimator θ̂up we can compute
its maximum risk and use it to upper bound the minimax risk, i.e.

inf
θ̃

sup
θ∈Θ

R(θ, θ̃) ≤ R(θ, θ̂up).

The Bayes risk of the Bayes estimator for any prior π lower bounds the minimax risk. Fix a
prior π and suppose that θ̂low is the Bayes estimator with respect to π, then we have that:

Bπ(θ̂low) ≤ Bπ(θminimax) ≤ sup
θ
R(θ, θminimax) = inf

θ̃
sup
θ∈Θ

R(θ, θ̃).

Let us see an example of this in action.

Example: We will prove a classical result that if we observe independent draws from a
d-dimensional Gaussian, X1, . . . , Xn ∼ N(θ, Id), then the average:

θ̂ =
1

n

n∑
i=1

Xi,

is a minimax estimator of θ with respect to the squared loss. I will do the entire calculation
for the d-dimensional case – if you find this confusing try to first work out the case when
d = 1.

First, let us compute the upper bound. We note that,

θ̂ ∼ N(θ, Id/n),

so that its risk:

R(θ, θ̂) = E[
d∑
i=1

(θ̂i − θi)2] = E[
d∑
i=1

Z2
i ],

where Zi ∼ N(0, 1/n). This yields that,

inf
θ̃

sup
θ∈Θ

R(θ, θ̃) ≤ R(θ, θ̂) =
d

n
.

Let us now try to lower bound the minimax risk using the Bayes risk. Let us take the prior
to be zero-mean Gaussian, i.e. we take π = N(0, c2Id). You can convince yourself that the

likelihood p(X1, . . . , Xn|θ) ∝ p(θ̂|θ) (you can do this directly or appeal to sufficiency). This
in turn gives us that the posterior,

p(θ|X1, . . . , Xn) ∝ p(θ̂|θ)π(θ) ∝ p(θ|θ̂),
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is the same as the posterior in the following setting:

θ ∼ N(0, c2Id)

θ̂ ∼ N(θ, Id/n),

so that in order to compute the posterior mean we note that,(
θ

θ̂

)
∼ N

[(
0
0

)
,

[
c2Id c2Id
c2Id (c2 + 1/n)Id

]]
We can now compute the posterior (using standard conditional Gaussian formulae), and
obtain its mean:

E[θ|θ̂] =
c2

c2 + 1/n
θ̂.

Now, the Bayes risk of this estimator provides us a lower bound on the minimax risk. To
compute the Bayes risk we note that,

R(θ, θ̂) = EX1,...,Xn‖
c2

c2 + 1/n
θ̂ − θ‖2

2.

Above we noted that θ̂ = θ + Z, where Z ∼ N(0, Id/n), so we have

R(θ, θ̂) = EZ‖
c2

c2 + 1/n
Z − θ

n(c2 + 1/n)
‖2

2.

Let us denote β := c2 + 1/n. Then we obtain that,

R(θ, θ̂) =
‖θ‖2

2

n2β2
+
c4

β2
E‖Z‖2

2 =
‖θ‖2

2

n2β2
+
c4

β2

d

n
.

The Bayes risk further averages this over θ ∼ N(0, c2Id) to obtain that,

Bπ(
c2

c2 + 1/n
θ̂) =

c2d

n2β2
+
c4

β2

d

n
=
c2d

nβ
=

d

n(1 + 1/(nc2))
.

Since c was arbitrary we can take the limit as c → ∞ to obtain that the minimax risk is
upper and lower bounded by d/n and conclude that the average θ̂ is minimax.

17.1.2 Least Favorable Prior

The other way to obtain Bayes estimators is by constructing what are called least favorable
priors.
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Theorem 17.1 Let θ̂ be the Bayes estimator for some prior π. If

R(θ, θ̂) ≤ Bπ(θ̂) for all θ (17.2)

then θ̂ is minimax and π is called a least favorable prior.

Proof:

Suppose that θ̂ is not minimax. Then there is another estimator θ̂0 such that supθ R(θ, θ̂0) <

supθ R(θ, θ̂). Since the average of a function is always less than or equal to its maximum, we

have that Bπ(θ̂0) ≤ supθ R(θ, θ̂0). Hence,

Bπ(θ̂0) ≤ sup
θ
R(θ, θ̂0) < sup

θ
R(θ, θ̂) ≤ Bπ(θ̂) (17.3)

which is a contradiction.

A previous student’s alternative Proof: Since we have that,

R(θ, θ̂) ≤ Bπ(θ̂) for all θ

we can see that,

sup
θ
R(θ, θ̂) ≤ Bπ(θ̂),

where the LHS is an upper bound on the minimax risk, and the RHS is a lower bound on
the minimax risk, so it must be the case that supθ R(θ, θ̂) is equal to the minimax risk, and

hence that θ̂ is a minimax estimator.

Theorem 17.2 Suppose that θ̂ is the Bayes estimator with respect to some prior π. If the
risk is constant then θ̂ is minimax.

Proof:

The Bayes risk is Bπ(θ̂) =
∫
R(θ, θ̂)π(θ)dθ = c and hence R(θ, θ̂) ≤ Bπ(θ̂) for all θ. Now

apply the previous theorem.

Example 17.3 Consider the Bernoulli model with squared error loss. We showed previously
that the estimator

p̂ =

∑n
i=1Xi +

√
n/4

n+
√
n

has a constant risk function. This estimator is the posterior mean, and hence the Bayes
estimator, for the prior Beta(α, β) with α = β =

√
n/4. Hence, by the previous theorem,

this estimator is minimax.


