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18.1 Asymptotic theory

This lecture and the next will focus on asymptotic theory for the MLE. We suppose that we
obtain a sample X1, . . . , Xn ∼ p(X; θ) and are interested in estimating θ.

Analogous to the asymptotic theory we developed for the average of i.i.d. random variables
we will be interested in two questions:

1. Consistency: Does the MLE converge in probability to θ, i.e. does θ̂MLE
p→ θ? This

is analogous to the LLN.

2. Asymptotic distribution: What can we say about the distribution of
√
n(θ̂MLE−θ)?

This is analogous to the CLT.

We will begin with the question of consistency.

18.2 Consistency of the MLE

The main take-home from this section is that under somewhat mild conditions the MLE
is a consistent estimator. We will try to develop the necessary conditions and build some
intuition about the MLE and about what consistency entails.

18.2.1 MLE as Empirical Risk Minimization

We have discussed previously the idea of empirical risk minimization, where we construct an
estimator by minimizing an empirical estimate of the risk. We looked at the particular case
of classification with the 0/1 loss. The MLE can be viewed as a special case of ERM with a
different loss function.

Suppose we define the risk function:

Rn(θ̂, θ) =
1

n

n∑
i=1

log
p(Xi; θ)

p(Xi; θ̂)
,
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then we can observe that minimizing this risk function is identical to maximizing the likeli-
hood. Notice that we introduced an extra p(Xi; θ) term but this does not affect anything.
Of course, if this is the empirical risk it is natural to wonder what the associated population
risk is. This is given as:

R(θ̂, θ) = Eθ log
p(X; θ)

p(X; θ̂)
,

which is known as the Kullback-Leibler divergence, i.e. the population risk is the KL diver-
gence KL(p(X; θ)‖p(X; θ̂)).

Notice that, the empirical risk is a sum of i.i.d terms so by the LLN we have that for any
fixed θ̃

Rn(θ̃, θ)
p→ R(θ̃, θ).

To analyze empirical risk minimization we needed a uniform LLN and we will need exactly
this to show consistency.

An important property of the KL divergence is that it is zero iff p(X; θ) = p(X; θ̂) almost
everywhere (i.e. they are equal except on sets of measure 0).

The main thing to remember is the connection between MLE and KL divergence.

18.2.2 Conditions for consistency

Condition 1: Identifiability: A basic requirement for constructing any consistent estimator
is that the model be identifiable, i.e. if θ1 6= θ2 then it must be the case that p(X; θ1) 6=
p(X; θ2).

We will in general require something slightly stronger than this:

Condition 2: Strong identifiability: We assume that for every ε > 0

inf
θ̃:|θ̃−θ|≥ε

KL(p(X; θ)‖p(X; θ̃)) > 0.

This condition is essentially the same as Condition 1, except that it does not allow the
difference between the two distributions to be vanishingly small. The two conditions are
equivalent if θ is restricted to lie in a compact set.

Condition 3: Uniform LLN: Assume that,

sup
θ̃

|Rn(θ̃, θ)−R(θ̃, θ)| p→ 0.

This condition is a uniform LLN. As we have seen before it holds for instance if the
Rademacher complexity of the class of functions of the form: fθ̃(X) = log p(X; θ̃)/p(X; θ) is
not too large. In 36-702/36-708/10-716/. . . you will explore this idea further.
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Theorem 18.1 Suppose that Conditions 2 and 3 above hold, then the MLE is consistent.

Proof: Fix an ε > 0. Using the strong identifiability condition we see that for every ε > 0,
we have that there is an η > 0 such that,

KL(p(X; θ)‖p(X; θ̃)) ≥ η,

if |θ̃ − θ| ≥ ε. We will show that for the MLE θ̂, we have that KL(p(X; θ)‖p(X; θ̂)) ≤ η, as

n→∞ in probability. This in turn implies that |θ̂ − θ| ≤ ε which implies that θ̂
p→ θ.

If remains to show that KL(p(X; θ)‖p(X; θ̂)) ≤ η, as n→∞. Notice that,

KL(p(X; θ)‖p(X; θ̂)) = R(θ̂, θ) = R(θ̂, θ)−Rn(θ̂, θ) +Rn(θ̂, θ)
(i)

≤ R(θ̂, θ)−Rn(θ̂, θ)
p→ 0,

where the final convergence simply uses Condition 3. The inequality (i) follows since,

Rn(θ̂, θ) =
1

n

n∑
i=1

log
p(Xi; θ)

p(Xi; θ̂)
≤ 0,

since θ̂ is the MLE.

18.3 Inconsistency of the MLE

The MLE can fail to be consistent. When the model is not identifiable it is clear that we
cannot have consistent estimators.

The other possible failure is the failure of the uniform law. This typically happens when the
parameter space is too large. Here is a simple example:

Example: Suppose that we measure some outcome (say their blood sugar) for n individuals
using a machine. We do it twice for every individual so that we can assess the variability of
the machine, i.e. suppose we observe:

Y11, Y12 ∼ N(µ1, σ
2)

...

Yn1, Yn2 ∼ N(µn, σ
2),

and want to estimate σ2. Even though we only want to estimate σ2 the model has a growing
number of parameters µ1, . . . , µn, σ

2 and the MLE for σ2 will depend on estimating µi.
Formally, we can see that the MLE for the means is:

µ̂i =
Yi1 + Yi2

2
.
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The log-likelihood for σ2 can be written as:

LL(σ2, µ) = −n log σ2 − 1

2σ2

n∑
i=1

[
(Yi1 − µi)2 + (Yi2 − µi)2

]
,

which is maximized when we take:

σ̂2 =
1

2n

n∑
i=1

[
(Yi1 − µ̂i)2 + (Yi2 − µ̂i)2

]
=

1

4n

n∑
i=1

(Yi1 − Yi2)2.

Notice that,

E[σ̂2] =
σ2

2
,

so by the LLN the MLE is inconsistent. One could easily fix this in this problem (by
multiplying the MLE by 2) but more generally this could be tricky. We note that in this
type of problem where the number of parameters is not fixed (and grows with the sample
size) it is not even clear how to define convergence of the log-likelihood since its limit changes
with the sample size.

18.4 MLE under misspecification

In statistical modeling we do not typically believe the model is correct, i.e. that the samples
were in fact generated by some distribution in our model. Rather, we think of the model
as a useful idealization or a simplification. In this (more realistic) case, one might wonder
what the MLE converges to, or if it converges at all?

Concretely, suppose X1, . . . , Xn ∼ q, and we estimate θ̂MLE, then what can we say about our
estimate? To answer this, we can follow a similar argument to what we did in the beginning
of the lecture and observe that at the population-level (i.e. with infinite samples) the MLE
is:

θ̂MLE = arg max
θ∈Θ

Eq log p(X; θ)

How do we interpret this statement? As before we can re-write it in terms of KL divergences
and see that:

KL(q‖pθ̂MLE
) ≤ KL(q‖pθ) for all θ ∈ Θ.

So that at the population-level we can conclude that the MLE is estimating the KL projection
of the data-generating distribution on our model, i.e. when q does not belong to our model
the MLE is essentially estimating the KL projection of q onto our model. One can also impose
similar conditions to what we had in the last section (uniform law + strong identifiability)
to complete the consistency argument under model misspecification.


