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Lecturer: Siva Balakrishnan

The classical statistical hypothesis testing framework (as with much of statistics) originated
with Fisher.

Example 1: The story goes that a colleague of Fisher claimed to be able to distinguish if
in an English tea, milk was added before water (or the other way around).

Fisher proposed to give her 8 cups of tea, 4 of which had milk first, and 4 of which had tea
first in a random order. The point was roughly, that if she was “labeling” at random then
she would have a small chance (1 in 70) of getting every cup right.

In his description, the null hypothesis was that she had no ability to distinguish. She actually
got them all correct, which would have happened by chance with probability 0.014. He
concluded that since this probability was less that 0.05 that it was “statistically significant”.

Notice the asymmetries/arbitrary-ness in this description: only a null hypothesis is actually
specified (i.e. there is no alternative hypothesis – it is in some sense implicit), i.e. the null
hypothesis is often special. Furthermore, there is an arbitrary choice of a cut-off 0.05 below
which we declare something is significant.

Hypothesis testing is really everywhere. It would probably alarm you to know how many
policy decisions, nutrition decisions, scientific results live or die on the basis of hypothesis
tests.

Example 2: A couple of typical examples to emphasize again why the null might really be
special. A common example is in forensics. Things like fingerprint matches, DNA matches,
deciding whether pieces of glass match in their chemical composition etc. are actually prob-
lems of a statistical nature. Here perhaps following the “innocent till proven guilty” adage,
the null hypothesis is that the defendant is innocent. We then need to review evidence and
choose to either reject or fail to reject (i.e. acquit) the defendant. It is perhaps clear that
there in many cases is a heavier price for false convictions and so it makes sense to control
this error. Indeed, deciding how to choose a significance level in this context is a huge debate.

Example 3: Another common example is in epidemiology. A drug company has new
drug and wishes to compare it with current standard treatment. Federal regulators tell the
company that they must demonstrate that new drug is better than current treatment to
receive approval. The firm runs clinical trial where some patients receive new drug, and
others receive standard treatment. There is some numeric response of the “treatment effect”
(say higher is better). The null hypothesis is that the new drug is no better than the current
standard. Again false positives (where we falsely declare the new drug as better when it
is actually harmful) are potentially much worse than false negatives, so we would like to
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protect against this.

20.1 The formal framework

Let X1, . . . , Xn ∼ p(x; θ). Suppose we we want to know if θ = θ0 or not, where θ0 is a specific
value of θ. For example, if we are flipping a coin, we may want to know if the coin is fair;
this corresponds to p = 1/2. If we are testing the effect of two drugs — whose means effects
are θ1 and θ2 — we may be interested to know if there is no difference, which corresponds
to θ1 − θ2 = 0.

We formalize this by stating a null hypothesis H0 and an alternative hypothesis H1. For
example:

H0 : θ = θ0 versus θ 6= θ0.

More generally, consider a parameter space Θ. We consider

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

where Θ0 ∩Θ1 = ∅. If Θ0 consists of a single point, we call this a simple null hypothesis. If
Θ0 consists of more than one point, we call this a composite null hypothesis.

Example 20.1 X1, . . . , Xn ∼ Bernoulli(p).

H0 : p =
1

2
H1 : p 6= 1

2
. �

The question is not whether H0 is true or false. The question is whether there is sufficient
evidence to reject H0, much like a court case. Our possible actions are: reject H0 or retain
(don’t reject) H0.

Decision
Retain H0 Reject H0

H0 true
√

Type I error
(false positive)

H1 true Type II error
√

(false negative)
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20.1.1 Normal Quantiles

I almost always confuse these so this is mostly for my own reference. Let Φ be the cdf of a
standard Normal random variable Z. For 0 < α < 1, let

zα = Φ−1(1− α).

Hence,
P (Z > zα) = α.

Also, P (Z < −zα) = α.

20.2 Constructing Tests

Hypothesis testing involves the following steps:

1. Choose a test statistic Tn = Tn(X1, . . . , Xn).

2. Choose a rejection region R ⊂ X n.

3. If (X1, . . . , Xn) ∈ R we reject H0 otherwise we retain H0.

Although strictly speaking you can define the rejection region without an associated test
statistic, often it will be the case that R will be defined in terms of the test statistic, i.e. we
simply reject if the test statistic takes an “extreme value”.

Example 20.2 Let X1, . . . , Xn ∼ Bernoulli(p). Suppose we test

H0 : p =
1

2
H1 : p 6= 1

2
.

Let Tn = n−1
∑n

i=1 Xi and R = {x1, . . . , xn : |Tn(x1, . . . , xn)− 1/2| > δ}. So we reject H0 if
|Tn − 1/2| > δ.

We need to choose T and R so that the test has good statistical properties. We will consider
the following tests:

1. The Neyman-Pearson Test

2. The Wald test

3. The Likelihood Ratio Test (LRT)

4. The permutation test.

Before we discuss these methods, we first need to talk about how we evaluate tests.
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20.3 Error Rates and Power

Suppose we reject H0 when (X1, . . . , Xn) ∈ R. Define the power function by

β(θ) = Pθ(X1, . . . , Xn ∈ R).

We want β(θ) to be small when θ ∈ Θ0 and we want β(θ) to be large when θ ∈ Θ1.
The general strategy is:

1. Fix α ∈ [0, 1].

2. Now try to maximize β(θ) for θ ∈ Θ1 subject to β(θ) ≤ α for θ ∈ Θ0.

Notice the asymmetry that we always favor the null hypothesis and only consider tests that
control the Type-I error.

We need the following definitions. A test is size α if

sup
θ∈Θ0

β(θ) = α.

A test is level α if
sup
θ∈Θ0

β(θ) ≤ α.

A size α test and a level α test are almost the same thing. The distinction is made bcause
sometimes we want a size α test and we cannot construct a test with exact size α but we
can construct one with a smaller error rate.

Example 20.3 X1, . . . , Xn ∼ N(θ, σ2) with σ2 known. Suppose we test

H0 : θ = θ0, H1 : θ > θ0.

This is called a one-sided alternative. Suppose we reject H0 if Tn > c where

Tn =
Xn − θ0

σ/
√
n
.

Then

β(θ) = Pθ

(
Xn − θ0

σ/
√
n

> c

)
= Pθ

(
Xn − θ
σ/
√
n
> c+

θ0 − θ
σ/
√
n

)
= P

(
Z > c+

θ0 − θ
σ/
√
n

)
= 1− Φ

(
c+

θ0 − θ
σ/
√
n

)
,
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where Φ is the cdf of a standard Normal and Z ∼ Φ. Now

sup
θ∈Θ0

β(θ) = β(θ0) = 1− Φ(c).

To get a size α test, set 1− Φ(c) = α so that

c = zα

where zα = Φ−1(1− α). Our test is: reject H0 when

Tn =
Xn − θ0

σ/
√
n

> zα.

Example 20.4 X1, . . . , Xn ∼ N(θ, σ2) with σ2 known. Suppose

H0 : θ = θ0, H1 : θ 6= θ0.

This is called a two-sided alternative. We will reject H0 if |Tn| > c where Tn is defined as
before. Now

β(θ) = Pθ(Tn < −c) + Pθ(Tn > c)

= Pθ

(
Xn − θ0

σ/
√
n

< −c
)

+ Pθ

(
Xn − θ0

σ/
√
n

> c

)
= P

(
Z < −c+

θ0 − θ
σ/
√
n

)
+ P

(
Z > c+

θ0 − θ
σ/
√
n

)
= Φ

(
−c+

θ0 − θ
σ/
√
n

)
+ 1− Φ

(
c+

θ0 − θ
σ/
√
n

)
= Φ

(
−c+

θ0 − θ
σ/
√
n

)
+ Φ

(
−c− θ0 − θ

σ/
√
n

)
since Φ(−x) = 1− Φ(x). The size is

β(θ0) = 2Φ(−c).

To get a size α test we set 2Φ(−c) = α so that c = −Φ−1(α/2) = Φ−1(1− α/2) = zα/2. The
test is: reject H0 when

|T | =
∣∣∣∣Xn − θ0

σ/
√
n

∣∣∣∣ > zα/2.

20.4 The Neyman-Pearson Test

Let Cα denote all level α tests. A test in Cα with power function β is uniformly most
powerful (UMP) if the following holds: if β′ is the power function of any other test in Cα
then β(θ) ≥ β′(θ) for all θ ∈ Θ1.

Consider testing H0 : θ = θ0 versus H1 : θ = θ1. (Simple null and simple alternative.)
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Theorem 20.5 Let L(θ) = p(X1, . . . , Xn; θ) and

Tn =
L(θ1)

L(θ0)
.

Suppose we reject H0 if Tn > k where k is chosen so that

Pθ0(X
n ∈ R) = α.

This test is a UMP level α test.

One nice thing about this is that it is a “general recipe” for doing a hypothesis test. The
drawback of course is that it only applies to the restricted class of simple versus simple tests.

The Neyman-Pearson test, despite its restricted applicability is a very important conceptual
contribution. When it is applicable it is an optimal test. This is often called the Neyman-
Pearson Lemma, and we will prove this today.

20.4.1 The Neyman-Pearson Lemma

Proof: Let us denote the test function of the NP test as φNP and the test function of any
other test we want to compare against as φA. The test function simply takes the value 1 if
the test rejects and 0 otherwise. Since the parameters θ0 and θ1 are fixed we will be thinking
of the likelihood as Xn is varied. To ease notation we will assume that one sample is observed
(nothing changes more generally) and denote f0(x) = L(θ0;x) and f1(x) = L(θ1;x). So with
this notation we simply reject if:

f1(x)

f0(x)
≥ k.

To prove the NP Lemma, we will first argue that the following is true:∫
x

(φNP (x)− φA(x))︸ ︷︷ ︸
T1

(f1(x)− kf0(x))︸ ︷︷ ︸
T2

dx ≥ 0.

To see this we can just consider some cases:

1. If both tests reject or if both tests accept then the inequality is clearly true since the
LHS is 0.

2. If NP rejects, and the test A accepts then φNP (x) = 1, and φA(x) = 0, so T1 ≥ 0.
Since the NP test rejected the null we know that:

f1(x)

f0(x)
≥ k,

so that T2 ≥ 0. So the inequality is true in this case.
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3. If NP accepts and the test A rejects then both T1 and T2 are negative so the inequality
is also true in this case.

So we can see that for every x, T1 × T2 ≥ 0 so it is true when we integrate over x. Now, we
can rearrange this inequality to see that:∫

x

(φNP (x)− φA(x))f1(x)dx ≥ k

∫
x

(φNP (x)− φA(x))f0(x)dx

= k

∫
x

φNP (x)f0(x)dx︸ ︷︷ ︸
=α

−
∫
x

φA(x)f0(x)dx︸ ︷︷ ︸
≤α


≥ 0.

This proves the NP lemma, i.e. that the power of the NP test is larger than the power of
any other test.


