
36-705: Intermediate Statistics Fall 2019

Lecture 21: October 16
Lecturer: Siva Balakrishnan

In the last class we showed that the Neyman-Pearson test is optimal for testing simple versus
simple hypothesis tests. Today we will develop some generalizations and tests that are useful
in other more complex settings.

21.1 The Wald Test

When we are testing a simple null hypothesis against a possibly composite alternative, the
NP test is no longer applicable and a general alternative is to use the Wald test.

We are interested in testing the hypotheses in a parametric model:

H0 : θ = θ0

H1 : θ 6= θ0.

The Wald test most generally is based on an asymptotically normal estimator, i.e. we suppose
that we have access to an estimator θ̂ which under the null satisfies the property that:

θ̂
d→ N(θ0, σ

2
0),

where σ2
0 is the variance of the estimator under the null. The canonical example is when θ̂

is taken to be the MLE.

In this case, we could consider the statistic:

Tn =
θ̂ − θ0

σ0

,

or if σ0 is not known we can plug-in an estimate to obtain the statistic,

Tn =
θ̂ − θ0

σ̂0

.

Under the null Tn
d→ N(0, 1), so we simply reject the null if: |Tn| ≥ zα/2. This controls

the Type-I error only asymptotically (i.e. only if n → ∞) but this is relatively standard in
applications.
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Example: Suppose we considered the problem of testing the parameter of a Bernoulli, i.e.
we observe X1, . . . , Xn ∼ Ber(p), and the null is that p = p0. Defining p̂ = 1

n

∑n
i=1 Xi. A

Wald test could be constructed based on the statistic:

Tn =
p̂− p0√
p0(1−p0)

n

,

which has an asymptotic N(0, 1) distribution. An alternative would be to use a slightly
different estimated standard deviation, i.e. to define,

Tn =
p̂− p0√
p̂(1−p̂)
n

.

Observe that this alternative test statistic also has an asymptotically standard normal dis-
tribution under the null. Its behaviour under the alternate is a bit more pleasant as we will
see.

21.1.1 Power of the Wald Test

To get some idea of what happens under the alternate, suppose we are in some situation

where the MLE has “standard asymptotics”, i.e. θ̂ − θ d→ N(0, 1/(nI1(θ))). Suppose that
we use the statistic:

Tn =

√
nI1(θ̂)(θ̂ − θ0),

and that the true value of the parameter is θ1 6= θ0. Let us define:

∆ =
√
nI1(θ1)(θ0 − θ1),

then the probability that the Wald test rejects the null hypothesis is asymptotically:

1− Φ
(
∆ + zα/2

)
+ Φ

(
∆− zα/2

)
.

You will prove this on your HW (it is some simple re-arrangement, similar to what we have
done previously when computing the power function in a Gaussian model). There are some
aspects to notice:

1. If the difference between θ0 and θ1 is very small the power will tend to α, i.e. if ∆ ≈ 0
then the test will have trivial power.

2. As n→∞ the two Φ terms will approach either 0 or 1, and so the power will approach
1.

3. As a rule of thumb the Wald test will have non-trivial power if |θ0 − θ1| � 1√
nI1(θ1)

.
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21.2 Likelihood Ratio Test (LRT)

To test composite versus composite hypotheses the general method is to use something called
the (generalized) likelihood ratio test.

We want to test:

H0 : θ ∈ Θ0

H1 : θ /∈ Θ0.

This test is simple: reject H0 if λ(X1, . . . , Xn) ≤ c where

λ(X1, . . . , Xn) =
supθ∈Θ0

L(θ)

supθ∈Θ L(θ)
=
L(θ̂0)

L(θ̂)

where θ̂0 maximizes L(θ) subject to θ ∈ Θ0.

We can simplify the LRT by using an asymptotic approximation. This fact that the LRT
generally has a simple asymptotic approximation is known as Wilks’ phenomenon. First,
some notation:

Notation: Let W ∼ χ2
p. Define χ2

p,α by

P (W > χ2
p,α) = α.

We let `(θ) denote the log-likelihood in what follows.

Theorem 21.1 Consider testing H0 : θ = θ0 versus H1 : θ 6= θ0 where θ ∈ R. Under H0,

−2 log λ(X1, . . . , Xn) χ2
1.

Hence, if we let Tn = −2 log λ(Xn) then

Pθ0(Tn > χ2
1,α)→ α

as n→∞.

Proof: Using a Taylor expansion:

`(θ) ≈ `(θ̂) + `′(θ̂)(θ − θ̂) + `′′(θ̂)
(θ − θ̂)2

2
= `(θ̂) + `′′(θ̂)

(θ − θ̂)2

2
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and so

−2 log λ(x1, . . . , xn) = 2`(θ̂)− 2`(θ0)

≈ 2`(θ̂)− 2`(θ̂)− `′′(θ̂)(θ0 − θ̂)2 = −`′′(θ̂)(θ0 − θ̂)2

=
− 1
n
`′′(θ̂)

I1(θ0)
(
√
nI1(θ0)(θ̂ − θ0))2 = An ×Bn.

Now An
p→ 1 by the WLLN and

√
Bn  N(0, 1). The result follows by Slutsky’s theorem.

Example 21.2 X1, . . . , Xn ∼ Poisson(λ). We want to test H0 : λ = λ0 versus H1 : λ 6= λ0.
Then

−2 log λ(xn) = 2n[(λ0 − λ̂)− λ̂ log(λ0/λ̂)].

We reject H0 when −2 log λ(xn) > χ2
1,α.

Now suppose that θ = (θ1, . . . , θk). Suppose that H0 : θ ∈ Θ0 fixes some of the parameters.
Then, under conditions,

Tn = −2 log λ(X1, . . . , Xn) χ2
ν

where

ν = dim(Θ)− dim(Θ0).

Therefore, an asymptotic level α test is: reject H0 when Tn > χ2
ν,α.

Example 21.3 Consider a multinomial with θ = (p1, . . . , p5). So

L(θ) = py11 · · · p
y5
5 .

Suppose we want to test

H0 : p1 = p2 = p3 and p4 = p5

versus the alternative that H0 is false. In this case

ν = 4− 1 = 3.

The LRT test statistic is

λ(x1, . . . , xn) =

∏5
j=1 p̂

Yj
0j∏5

j=1 p̂
Yj
j

where p̂j = Yj/n, p̂01 = p̂02 = p̂03 = (Y1 + Y2 + Y3)/n, p̂04 = p̂05 = (1 − 3p̂01)/2. Now we
reject H0 if −2λ(X1, . . . , Xn) > χ2

3,α. �
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21.3 p-values

When we test at a given level α we will reject or not reject. It is useful to summarize what
levels we would reject at and what levels we would not reject at.

The p-value is the smallest α at which we would reject H0.

In other words, we reject at all α ≥ p. So, if the pvalue is 0.03, then we would reject at
α = 0.05 but not at α = 0.01.

Hence, to test at level α, we reject when p < α.

Theorem 21.4 Suppose we have a test of the form: reject when T (X1, . . . , Xn) > c. Then
the p-value is

p = sup
θ∈Θ0

Pθ(Tn(X1, . . . , Xn) ≥ Tn(x1, . . . , xn))

where x1, . . . , xn are the observed data and X1, . . . , Xn ∼ pθ0.

Example 21.5 X1, . . . , Xn ∼ N(θ, 1). Test that H0 : θ = θ0 versus H1 : θ 6= θ0. We
reject when |Tn| is large, where Tn =

√
n(Xn − θ0). Let tn be the obsrved value of Tn. Let

Z ∼ N(0, 1). Then,

p = Pθ0
(
|
√
n(Xn − θ0)| > tn

)
= P (|Z| > tn) = 2Φ(−|tn|).

The p-value is a random variable. Under some assumptions that you will see in your HW
the p-value will be uniformly distributed on [0, 1] under the null.

Important. Note that p is NOT equal to P(H0|X1, . . . , Xn). The latter is a Bayesian
quantity which we will discuss later.


