
36-705: Intermediate Statistics Fall 2019

Lecture 22: October 21
Lecturer: Siva Balakrishnan

We begin discussing p-values, and then move on to discussing some important special testing
problems.

22.1 p-values

When we test at a given level α we will reject or not reject. It is useful to summarize what
levels we would reject at and what levels we would not reject at.

The p-value is the smallest α at which we would reject H0.

In other words, we reject at all α ≥ p. So, if the pvalue is 0.03, then we would reject at
α = 0.05 but not at α = 0.01.

Hence, to test at level α, we reject when p < α.

Theorem 22.1 Suppose we have a test of the form: reject when T (X1, . . . , Xn) > c. Then
the p-value is

p = sup
θ∈Θ0

Pθ(Tn(X1, . . . , Xn) ≥ Tn(x1, . . . , xn))

where x1, . . . , xn are the observed data and X1, . . . , Xn ∼ pθ.

Example 22.2 X1, . . . , Xn ∼ N(θ, 1). Test that H0 : θ = θ0 versus H1 : θ 6= θ0. We
reject when |Tn| is large, where Tn =

√
n(Xn − θ0). Let tn be the obsrved value of Tn. Let

Z ∼ N(0, 1). Then,

p = Pθ0
(
|
√
n(Xn − θ0)| > tn

)
= P (|Z| > tn) = 2Φ(−|tn|).

The p-value is a random variable. Under some assumptions that you will see in your HW
the p-value will be uniformly distributed on [0, 1] under the null.

Important. Note that p is NOT equal to P(H0|X1, . . . , Xn). The latter is a Bayesian
quantity which we will discuss later.
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22.2 More on p-values

In this section we will consider a simple example, derive the p-value, and derive its distribu-
tion under the null (you will do some of this more generally in your HW).

Suppose that X1, . . . , Xn ∼ N(θ, 1) and we want to distinguish:

H0 : θ = θ0

H1 : θ > θ0.

We consider the test statistic: Tn =
√
n(Xn−θ0), and notice that under the null Tn ∼ N(0, 1).

We reject for large values of Tn, and we can verify that the p-value is given by:

p-value = Φ(−Tn).

Notice that the p-value is a random variable which takes values in [0, 1]. Now, we can derive
its distribution under the null :

P0(p-value ≤ u) = P0(Φ(−Tn) ≤ u) = P0(−Tn ≤ Φ−1(u)) = Φ(Φ−1(u)) = u,

where we have use the fact that Φ is continuous and increasing, and that under the null −Tn
has a N(0, 1) distribution.

22.3 Goodness-of-fit testing

There are many testing problems that go beyond the usual parameteric testing problems we
have formulated so far. Since we may not get a chance to cover these in detail later on, I
thought it might be useful to discuss them briefly here.

The most canonical non-parametric testing problem is called goodness-of-fit testing. Here
given samples X1, . . . , Xn ∼ P , we want to test:

H0 : P = P0

H1 : P 6= P0,

for some fixed, known distribution P0.

As a hypothetical example, you collect some measurements from a light source, you believe
that the number of particles per unit time should have a Poisson distribution with a certain
rate parameter (the intensity), and want to test this hypothesis.
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22.3.1 The χ2 test

In the simplest setting, P0 and P are multinomials on k categories, i.e. the null distribution
just a vector of probabilities (p01, . . . , p0k), with p0i ≥ 0,

∑
i p0i = 1.

Given a sample X1, . . . , Xn you can reduce it to a vector of counts (Z1, . . . , Zk) where Zi is
the number of times you observed the i-th category.

A natural test statistic in this case (you could also do the likelihood ratio test) is to consider:

T (X1, . . . , Xn) =
k∑
i=1

(Zi − np0i)
2 − np0i

np0i

.

On your HW you will show that asymptotically this test statistic, under the null, has a χ2
k−1

distribution. This is called Pearson’s χ2 test.

More generally, you could do perform any goodness-of-fit test by reducing to a multinomial
test by binning, i.e. you define a sufficiently find partition of the domain, this induces a
multinomial p0 under the null which you then test using Pearson’s test.

22.4 Two-sample Testing

Another popular hypothesis testing problem is the following: you observe X1, . . . , Xn1 ∼ P
and Y1, . . . , Yn2 ∼ Q, and want to test if:

H0 : P = Q

H1 : P 6= Q.

There are many popular ways of testing this (for instance, in the ML literature kernel-based
tests are quite popular – search for “Maximum Mean Discrepancy” if you are curious).

Suppose again we considered the multinomial setting where P and Q are multinomials on
k categories. Then there is a version of the χ2 test that is commonly used. Let us define
(Z1, . . . , Zk) and (Z ′1, . . . , Z

′
k) to be the counts in the X and Y sample respectively. We can

define for i ∈ {1, . . . , k},

ĉi =
Zi + Z ′i
n1 + n2

.

The two-sample χ2 test is then:

Tn =
k∑
i=1

[
(Zi − n1ĉi)

2

n1ĉi
+

(Z ′i − n2ĉi)
2

n2ĉi

]
.
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This is a bit harder to see but under the null this statistic also has a χ2
k−1 distribution.

For two-sample testing we can determine the cutoff in a different way without resorting to
asymptotics. This is called a permutation test. We will explore this in the general (not
multinomial) setting.

A typical example is in a drug trial where one set of people are given a drug and the other set
are given a placebo. We then would like to know if there is some difference in the outcomes
of the two populations or if they are identically distributed.

There are various possible test statistics, but a common one is to use a difference in means:

T (X1, . . . , Xm, Y1, . . . , Yn) =

∣∣∣∣∣ 1

m

m∑
i=1

Xi −
1

n

n∑
i=1

Yi

∣∣∣∣∣ ,
one could also standardize this statistic by its variance, or consider more complex test statis-
tics based on signs and ranks. Let us denote the test statistic computed on the data we
observed as Tobs.

In general, since we have not assumed anything about FX and FY it is not easy to compute
the distribution of our test statistic, and approximations (based on a CLT for instance) might
be quite bad. The permutation test, gives a way to design an exact α level test without
making any approximations.

The idea of the permutation test is simple. Define N = m + n and consider all N ! permu-
tations of the data {X1, . . . , Xm, Y1, . . . , Yn}. For each permutation we could compute our
test statistic T . Denote these as T1, . . . , TN !.

The key observation is: under the null hypothesis each value T1, . . . , TN ! has the same
distribution (even if we do not know what it is).

Suppose we reject for large values of T . Then we could simply define the p-value as:

p-value =
1

N !

N !∑
i=1

I(Ti > Tobs).

It is important to note that this is an exact p-value, i.e. no asymptotic approximations are
needed to show that rejecting the null when this p-value is less than α controls the Type I
error at α. We will return to a formal proof of this fact in a subsequent lecture.

Here is a toy-example from the Wasserman book:

Example 2: Suppose we observe (X1, X2, Y1) = (1, 9, 3). Let T (X1, X2, Y1) be the difference
in means, i.e. T (X1, X2, Y1) = 2. The permutations are:
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We could use this to calculate the p-value by counting how often we got a larger value than
2:

p-value =
4

6
= 0.66,

so most likely we would not reject the null hypothesis in this case. Typically, we do not
calculate the exact p-value (although in principle we could) since evaluating N ! test statistics
would take too long for large N . Instead we approximate the p-value by drawing a few
random permutations and using them. This leads to the following algorithm for computing
the p-value using a permutation test:


