36-705: Intermediate Statistics Fall 2019
Lecture 24: October 28th

Lecturer: Siva Balakrishnan

We first finish up with Holm’s procedure and then turn our attention to the False Discovery
Rate (FDR) and controlling the FDR.

24.1 Holm’s procedure

There are many possible improvements to the Bonferroni procedure. For instance, suppose
that I told you that exactly (or at most) dy of the null hypotheses are truly nulls. Then
you can see that we could have used the cut-off of % and still maintained control over the
FWER.

As a thought experiment consider the following setting. You conduct d = 5 experiments and
you observe p-values of (0.7,0.02,0,0,0).

Intuitively, it seems like since we are absolutely sure that the last three experiments are
non-nulls we should be able to use the cut-off of «/2 for the remaining two tests, and still
control the FWER.

At a high-level it seems intuitively clear to us that other p-values for {p;},z contain in-
formation at least about the number of null hypotheses and we can use this to relax the
correction for p;. Holm’s procedure translates this intuition into a rigorous procedure.

1. Order the p-values piy < pa) < ... < pay-
2. If py < § then reject H1y and move on, else stop and accept all H;.

3. If poy < 777 then reject Hz) and move on, else stop and accept H(y), ..., H).
4. If pg) < a, then reject H(g), else accept Hg).
If you prefer: more succinctly, let
. .. - o)
F=min<?:py) > ——m— ¢,
Po =55 +1

and reject all H;) for 7 <"

24-1



24-2 Lecture 24: October 28th

The main claim is that Holm’s procedure also controls the FWER at level a. Importantly,
Holm’s procedure does not require independence of the p-values, and strictly dominates the
Bonferroni procedure.

Proof: Let I, denote the indices of the true nulls. First let us make an observation: if

minp; > —,

1€lp p d()
then we reject none of the true nulls. This is because the first time we encounter a true null
we would compare it to a threshold that is at most «/dy, and if we fail to reject it we would

not reject any of the other true nulls.

So the FWER is:
FWER < P (minpi < 3) <a,
i€l d()

by the union bound.

24.1.1 Something to think about

In the above discussion we assumed that there was a single scientist doing a bunch of tests
so he could appropriately correct his procedure for the multiple testing problem.

One thing to ponder is really what error rate should we be controlling, i.e. maybe I am the
editor of a journal, and I want to ensure that across all articles in my journal the FWER is
< a. Maybe I want this to be true across the entire field? Should I be adjusting my p-values
for people in other disciplines? Sounds absurd but it actually makes sense if you think about
each of these procedures and their implications for reproducibility.

24.2 False Discovery Rate

Suppose that we tested d = 1000 genes for association with some disease, we got a 1000 p-
values, and 100 of them were less than 0.01. We’d expect that roughly 0.01dy < 0.01d = 10
of these to be falsely rejected nulls, and perhaps this is not a bad tradeoff, i.e. if we rejected
the first 100 nulls, we would spend only 10% of our time on falsely rejected nulls, i.e. we
would make 90 real discoveries.

The FDR is the expected number of false rejections divided by the number of rejections.

Denote the number of false rejections as V', and the total number of rejections as R. Then
the false discovery proportion is:

— Vif R>0
“lo if R=0.
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The FDR is then defined as:
FDR = E[FDP].
In this notation we can see that the FWER is:

FWER = P(V > 1).

We will next consider how one can control the FDR. We will describe a procedure known as
the Benjamini-Hochberg (BH) procedure.

24.2.1 The BH procedure

The BH procedure is one that controls the FDR under independence (i.e. the p-values are
independent). There is a much weaker form of this procedure that works under dependence
(see the Wasserman book). It turns out to be very challenging to tightly control FDR under
strong dependence.

The procedure is:

1. Suppose we do d tests. Let us take the p-values pq,...,pq, and sort them, i.e. we
create the list: pq)y < pe) < ... < pa).

2. Define the thresholds:

3. Find the largest i, such that

imax = argmax{i : py) < t;}.

4. Reject all nulls upto and including #,,.y.

This might seem a bit confusing but here is a simple picture:
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24.2.2 Properties of FDR

We have now seen a procedure that controls the FDR under some assumptions. One question
of interest is how does FDR control compare to FWER control? Another is just: how do we
interpret FDR control?

Interpreting FDR control: The way to think about FDR control is: if we repeat our
experiment many times, on average we control the FDP. This is not a statement about the
individual experiment we did conduct, and really it does not say much about how likely it
is that on a given experiment we have an FDP that is larger than a threshold (think about
using Markov’s inequality).

FWER on the other hand, does control the error rate for a single experiment. That is, with
FWER control, we have managed our false discoveries unless we are very unlucky; with FDR
control, on average our test will control FDP, but in our particular experiment we may not
have done a very good job. We will see in a second controlling FWER does control the FDR.
The way to interpret all of this is that: FDR control is a very weak notion of error control.

Connection to FWER:

1. The first connection is that under the global null (when all the null hypotheses are
true) FDR control is equivalent to FWER control.

Proof:  Under the global null, any rejection is a false rejection. There are two
possibilities: either we do not reject anything: in this case the FDP = 0. If we do
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reject any null hypothesis then our FDP is 1 (since V' = R). So we have that:
FDR =E[FDP]=P(V >0)*x14+P(V =0)*x0=P(V > 0) = FWER.

The second connection is that the FWER > FDR always. This implies that controlling
the FWER implies FDR control.

Proof: We can see that the following is a simple upper bound on the FDP:
FDP <I(V > 1),

since if V' =0, FDP = 0, and if V' > 0 then V/R < 1. Taking expectations of this
expression gives:

FDR <P(V > 1) = FWER.

The flip-side of this is that FDR control is less stringent so if this is the correct measure
for you then you will have more power by controlling FDR (rather than controlling
FWER).

We will next consider how one can control the FDR. We will describe a procedure known as
the Benjamini-Hochberg (BH) procedure.

24.2.3 The BH procedure

The BH procedure is one that controls the FDR under independence (i.e. the p-values are
independent). There is a much weaker form of this procedure that works under dependence
(see the Wasserman book). It turns out to be very challenging to tightly control FDR under
strong dependence.

The procedure is:

1.

Suppose we do d tests. Let us take the p-values pq,...,pq, and sort them, i.e. we
create the list: pqy) < pe) < ... < pa).

Define the thresholds:

Find the largest 4,2« such that

Imax = arg maX{Z * D) < tl}

Reject all nulls upto and including 4,,,x.



24-6 Lecture 24: October 28th

This might seem a bit confusing but here is a simple picture:
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24.2.4 Properties of FDR

We have now seen a procedure that controls the FDR under some assumptions. One question
of interest is how does FDR control compare to FWER control? Another is just: how do we
interpret FDR control?

Interpreting FDR control: The way to think about FDR control is: if we repeat our
experiment many times, on average we control the FDP. This is not a statement about the
individual experiment we did conduct, and really it does not say much about how likely it
is that on a given experiment we have an FDP that is larger than a threshold (think about
using Markov’s inequality).

FWER on the other hand, does control the error rate for a single experiment. That is, with
FWER control, we have managed our false discoveries unless we are very unlucky; with FDR
control, on average our test will control FDP, but in our particular experiment we may not
have done a very good job. We will see in a second controlling FWER does control the FDR.
The way to interpret all of this is that: FDR control is a very weak notion of error control.

Connection to FWER:

1. The first connection is that under the global null (when all the null hypotheses are
true) FDR control is equivalent to FWER, control.

Proof:  Under the global null, any rejection is a false rejection. There are two
possibilities: either we do not reject anything: in this case the FDP = 0. If we do
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reject any null hypothesis then our FDP is 1 (since V' = R). So we have that:

FDR = E[FDP] = P(V > 0) x 1 + P(V = 0) x 0 = P(V > 0) = FWER.

2. The second connection is that the FWER > FDR always. This implies that controlling
the FWER implies FDR control.

Proof: We can see that the following is a simple upper bound on the FDP:
FDP <I(V > 1),

since if V' =0, FDP = 0, and if V' > 0 then V/R < 1. Taking expectations of this
expression gives:

FDR < P(V > 1) = FWER.

The flip-side of this is that FDR control is less stringent so if this is the correct measure

for you then you will have more power by controlling FDR (rather than controlling
FWER).

24.3 Proving BH controls FDR

The main result is the following:

Theorem: Suppose that the p-values are independent, the BH procedure controls the FDR
at level a.. In fact,
d
FDR < 2% < 4.
d
Proof Intuition: Suppose that the BH procedure returned a value iy, then we know
that,

Zmaxa

i <
p( max) d

We have rejected i hypotheses. At the cut-off i‘“'%o‘ we expect that doij‘Ta"a nulls to be
rejected. This gives us that the FDR should be roughly:

dOimaxOé d()a
FDR ~ =
A

Formalizing this argument is a bit intricate: notice that i,,,, is a random variable and fur-
thermore the numerator and denominator in the FDP are not independent random variables
so we need to be careful while taking the expectation of the ratio. I have included a formal
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proof that is identical to one from Emmanuel Candes’ Stat 300c notes. These notes are in
general a great resource that delve much deeper into theoretical aspects of multiple testing.

Proof: When dy = 0 there are no false discoveries so there is nothing to prove. We will
suppose that dy > 1, and denote the set of nulls as Iy. Let us define:

Vi = I(H; is rejected),

then we can write the FDP as:

Vi

FDP = S
; max{R, 1}’
i€ly

notice that taking the max in the denominator just avoids the 0/0 problem, and is a short-
hand way of writing the FDP. Suppose we could prove that:

Vi o
El—2 | =2
[maX{R, 1}} d’

then we are done since,

. ‘/; . doOé
FDR = ZE Lnax{R, 1}} 4

i€lp
To prove the claim we first re-write:

v, i V(R = k)
max{R,1} — k ’

noting that if R = 0 both the LHS and RHS are 0. We now need to make some further
observations:

1. Suppose that there are k rejections, then we can rewrite:
Vi = I(H; is rejected) = I(p; < ka/d).

2. Suppose that p; < ak/n, then we take p; and set it to 0, and denote the number of
rejections as R(p; — 0) and note that R(p; — 0) is exactly the same as R. On the
other hand if p; > ak/n then V; = 0. So we can write:

VII(R = k) = VI(R(p; — 0) = k).

Now, returning to the main thread suppose we considered the conditional expectation:

E[l(p; < ka/d)I(R(p; — 0) = k)|p1, ..., pim1, Pit1, - - -

7pd]

b1,y Pi—15Pit15-- - Pd| = k

I(R(p; — 0) = k)«
p )

E |:V;]I(}Z: k)
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where we use the fact that conditional on the other p-values I(R(p; — 0) = k) is determin-
istic and that the p-values have uniform distribution under the null, and that the nulls are
independent so that:

Ell(p; < ka/d)|p1, ..., pim1:pi+1, - - - pa] = E[l(pi < ka/d)] = ka/d.
Now, by iterated expectations:

d

Vi ViI(R = k)
E S E|E —) P Diets
Lnax{R,l}} kz:; |: [ L P, y Pi—1, Di+1 de
URpi = 0)=ka _«a
= d d

which was the claim we needed to prove.



