
36-705: Intermediate Statistics Fall 2019

Lecture 26: November 4
Lecturer: Siva Balakrishnan

We continue our discussion of confidence intervals and then turn our attention to the boot-
strap.

26.1 Inverting Probability Inequalities

In some simple cases, we can use tail bounds to derive confidence intervals. These typically
have the advantage of being exact, finite-sample intervals. However, they are rarely used in
practice for many reasons including: (1) we do not always have tail bounds for estimators of
interest (2) there are usually imprecisely known constants in tails bounds (3) related to (2)
they are often very conservative (i.e. the intervals are often too wide to be useful).

Here are a couple of examples:

Example 26.1 Let X1, . . . , Xn ∼ Bernoulli(p). By Hoeffding’s inequality:

P(|p̂− p| > ε) ≤ 2e−2nε2 .

Let

εn =

√
1

2n
log

(
2

α

)
.

Then

P

(
|p̂− p| >

√
1

2n
log

(
2

α

))
≤ α.

Hence, P(p ∈ C) ≥ 1− α where C = (p̂− εn, p̂+ εn).

Example 26.2 Let X1, . . . , Xn ∼ F . Suppose we want a confidence band for F . We can
use VC theory. Remember that

P
(

sup
x
|Fn(x)− F (x)| > ε

)
≤ 2e−2nε2 .

Let

εn =

√
1

2n
log

(
2

α

)
.
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Then

P

(
sup
x
|Fn(x)− F (x)| >

√
1

2n
log

(
2

α

))
≤ α.

Hence,
PF (L(t) ≤ F (t) ≤ U(t) for all t) ≥ 1− α

for all F , where
L(t) = F̂n(t)− εn, U(t) = F̂n(t) + εn.

We can improve this by taking

L(t) = max
{
F̂n(t)− εn, 0

}
, U(t) = min

{
F̂n(t) + εn, 1

}
.

26.1.1 Pivots

Another useful way of attempting to construct confidence intervals is to base the intervals
on pivots. A pivot is a function of the data and the unknown parameter θ – Q(X1, . . . , Xn, θ)
– whose distribution does not depend on θ.

Let us consider two examples:

1. Suppose that X1, . . . , Xn ∼ N(θ, 1) then we can see that Q(X1, . . . , Xn) = Xn − θ ∼
N(0, 1/n) and so the distribution of Q does not depend on θ.

2. Suppose we consider X1, . . . , Xn ∼ U [0, θ] and we consider the function:

Q(X1, . . . , Xn, θ) =
maxiXi

θ
,

has distribution:

P (Q(X1, . . . , Xn, θ) ≤ t) =

{
tn 0 ≤ t ≤ 1

1 t ≥ 1.

Once again the distribution does not depend on θ.

Given a pivot we can construct confidence intervals in a simple way. Since the distribution
of Q does not depend on θ, we can find a, b which do not depend on θ such that:

Pθ(a ≤ Q(X1, . . . , Xn, θ) ≤ b) = 1− α, for all θ ∈ Θ.

Now, we construct our confidence interval as:

C(X1, . . . , Xn) = {θ : a ≤ Q(X1, . . . , Xn, θ) ≤ b} .
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By our construction:

Pθ(θ ∈ C(X1, . . . , Xn)) = Pθ(a ≤ Q(X1, . . . , Xn, θ) ≤ b) = 1− α.

Going back to our two examples we find that we will once again obtain the now standard
intervals for the two problems (the additive interval for the Gaussian mean, and the multi-
plicative scale interval for the uniform parameter).

26.2 Tests Versus Confidence Intervals

Confidence intervals are more informative than tests. Intuitively, p-values are more informa-
tive than an accept/reject decision because it summarizes all the significance levels for which
we would reject the null hypothesis. Similarly, a confidence interval is more informative that
a test because it summarizes all the parameters for which we would (fail to) reject the null
hypothesis. More practically, a confidence interval tells us something about the “effect size”
as well as something about the uncertainty in our estimate of the “effect size”.

Look at Figure 25.1. Suppose we are testing H0 : θ = 0 versus H1 : θ 6= 0. We see 5
different confidence intervals. The first two cases (top two) correspond to not rejecting H0.
The other three correspond to rejecting H0. Reporting the confidence intervals is much more
informative than simply reporting “reject” or “don’t reject.”

26.3 Bootstrap samples

We have discussed this before when we discussed plug-in estimators: given samplesX1, . . . , Xn ∼
P we can write the empirical CDF as:

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x),

and the corresponding empirical distribution as:

Pn(A) =
1

n

n∑
i=1

I(Xi ∈ A).

We can also imagine drawing bootstrap samples by drawing samples from Pn. We denote
these as:

X∗
1 , . . . , X

∗
n ∼ Pn.

Drawing from the empirical distribution is the same as drawing from the distribution that
puts mass 1/n at each observed sample, i.e. it is the same as drawing from the uniform
distribution on the given samples. Equivalently, you can imagine drawing from the given
samples (uniformly) with replacement.
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Figure 26.1: Five examples: 1. Not significant, precise. 2. Not significant, imprecise. 3.
Barely significant, imprecise. 4. Barely significant, precise. 5. Significant and precise.
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26.4 Bootstrap variance estimate

To understand the idea, let us first consider the Monte-Carlo variance estimate. Suppose
we had an estimator θ̂n = g(X1, . . . , Xn) (this could be a complicated function), where

X1, . . . , Xn ∼ P and we want to estimate VarP (θ̂n).

Supposing that we knew P we could try to compute the variance analytically: this might be
difficult. The Monte-Carlo variance estimate would be to instead draw B samples of size n
from P , i.e. we draw, {X11, . . . , X1n}, . . . , {XB1, . . . , XBn} ∼ P , to compute our estimator

on each of these samples, i.e. compute θ̂
(1)
n , . . . , θ̂

(B)
n and then use the sample variance, i.e.

σ̂2
n =

1

B

B∑
i=1

(
θ̂(i)n

)2
−

(
1

B

B∑
i=1

θ̂(i)n

)2

.

By the LLN we have that σ̂2 p→ VarP (θ̂n). Unfortunately, we typically do not know P .

By now, you have already guessed the idea behind the bootstrap. The idea is to replace
P in the above procedure by the empirical distribution Pn. We’ll reason about this more
carefully in the next lecture. For now, here is the algorithm:

Bootstrap Variance Estimator

1. Draw a bootstrap sample X∗
1 , . . . , X

∗
n ∼ Pn. Compute θ̂∗n = g(X∗

1 , . . . , X
∗
n).

2. Repeat the previous step, B times, yielding estimators θ̂∗n,1, . . . , θ̂
∗
n,B.

3. Compute:

ŝ2 =
1

B

B∑
j=1

(θ̂∗n,j − θ)2,

where θ = 1
B

∑B
j=1 θ̂

∗
n,j.

4. Output ŝ2.

26.5 Bootstrap Confidence Intervals

The bootstrap can also be used to obtain confidence intervals. If your estimator has a
normal limit then you could just use a Wald interval with the bootstrap variance estimate,
i.e. Cn = [θ̂n − ŝzα/2, θ̂n + ŝzα/2].

It is often more accurate to use the distribution of the bootstrap estimates itself to construct
the bootstrap confidence interval.
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26.5.1 Hypothetical confidence interval

Suppose we knew the distribution of our estimator, in particular suppose we knew the
distribution of

√
n(θ̂n − θ). Let us denote the distribution by G and denote its α/2 and

1− α/2 quantiles by gα/2 and g1−α/2.

Then a 1− α confidence interval would be:

Cn =

[
θ̂n −

g1−α/2√
n
, θ̂n −

gα/2√
n

]
.

This might seem a little strange, but this is probably because you are used to confidence
intervals based on the normal distribution which has symmetric quantiles. To verify this,

P(θ ∈ Cn) = P
(
gα/2 ≤

√
n(θ̂n − θ) ≤ g1−α/2

)
= 1− α/2− α/2 = 1− α.

Again the point is that we do not know the distribution G above so we try to approximate
this using the bootstrap.

26.5.2 Bootstrap confidence interval algorithm

Bootstrap Confidence Interval

1. Draw a bootstrap sample X∗
1 , . . . , X

∗
n ∼ Pn. Compute θ̂∗n = g(X∗

1 , . . . , X
∗
n).

2. Repeat the previous step, B times, yielding estimators θ̂∗n,1, . . . , θ̂
∗
n,B.

3. Let

Ĝ(t) =
1

B

B∑
j=1

I
(√

n(θ̂∗n,j − θ̂n
)
≤ t).

4. Let

Cn =

[
θ̂n −

g1−α/2√
n
, θ̂n −

gα/2√
n

]
where gα/2 = Ĝ−1(α/2) and g1−α/2 = Ĝ−1(1− α/2).

5. Output Cn.
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26.6 Variants

There are many many many papers that have been written about the bootstrap. Particularly,
there are lots of variants – the block bootstrap for time-series, the residual bootstrap or the
wild bootstrap for regression, the parametric bootstrap for parametric models, the smooth
bootstrap and ideas related to sub-sampling to avoid certain regularity conditions, the less
computationally intensive but less general Jackknife and so on.


