
36-705: Intermediate Statistics Fall 2019

Lecture 31: November 15
Lecturer: Siva Balakrishnan

We begin with a quick review of low dimensional linear regression, before turning our atten-
tion to high-dimensional regression with the LASSO.

31.1 Low Dimensional Linear Regression – Review

We will now review some basic facts about linear regression. We will not go into much detail
here – if you have not seen this all before I recommend reading Chapter 13 of the Wasserman
book.

Linear regression is a tool to approximate the conditional expectation of Y |X by a linear
function of X. If you take a class on linear regression you will learn in Lecture 1 not to
assume the true regression function is linear. We will assume the true regression function is
linear, i.e. we assume we observe pairs {(x1, y1), . . . , (xn, yn)} where (x, y) are linked via the
linear model:

yi = 〈xi, β∗〉+ εi,

where yi ∈ R, xi ∈ Rd and εi ∼ N(0, σ2). We let

Σ̂ =
1

n

n∑
i=1

xix
T
i .

Least Squares: In the setting where Σ̂ is invertible a natural approach to estimating β∗

is to use least squares, i.e. we consider the estimator:

β̂ = arg min
β

1

2

n∑
i=1

(yi − 〈xi, β〉)2.

In this setting the least squares estimator can be written in closed form as:

β̂ = Σ̂−1

[
1

n

n∑
i=1

xiyi

]
.

It should be straightforward to convince yourself that under the model we wrote down (with
Gaussian errors) the MLE is the same as the least squares estimator.
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In general, we will often assume that the covariates xi are random, i.e. are drawn from some
distribution – this is known as random design regression. Some people alternatively assume
that the xis are fixed, and the only thing that is stochastic is the noise. This is known as
fixed design regression. We often write the design matrix X ∈ Rn×d as the matrix with rows
equal to the data samples, then we can write the least squares estimator as:

β̂ = (XTX)−1XTy.

You can verify that,

β̂ = (XTX)−1XTy = (XTX)−1XT (Xβ∗ + ε)

= β∗ + (XTX)−1XT ε

∼ N(β∗, σ2(XTX)−1).

There are several possible quantities of interest in linear regression.

1. The in-sample prediction error, i.e.:

E

[
‖Xβ̂ −Xβ∗‖22

n

]
.

2. The out-of-sample prediction error, i.e.:

E
[
〈x, β̂〉 − 〈x, β∗〉

]2
,

where the expectation is over both the randomness in β̂ and in the new sample x.

3. `2 error in estimating β∗, i.e. E[‖β̂ − β∗‖22].

4. The support recovery error (makes most sense when β∗ is sparse):

P(supp(β̂) 6= supp(β∗)).

Let us quickly review these quantities for low-dimensional regression.

31.1.1 In-sample prediction error

Since under our assumptions:

β̂ ∼ N(β∗, σ2(XTX)−1).
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We can see that:

Xβ̂ ∼ N(Xβ∗, σ2X(XTX)−1XT ),

(if this is not clear to you, see Wikipedia - multivariate normal distribution, the section on
affine transformation). This yields,

E‖Xβ̂ −Xβ∗‖22 = σ2E
[
tr(X(XTX)−1XT )

]
= σ2d,

since the matrix P = X(XTX)−1XT is a (full-rank) projection matrix (i.e. P 2 = P ) all of
its eigenvalues are 1. This gives us that,

E

[
‖Xβ̂ −Xβ∗‖22

n

]
=
σ2d

n
.

31.1.2 `2 error

Again, under our assumptions we know that,

β̂ ∼ N(β∗, σ2(XTX)−1).

So we obtain that,

E‖β̂ − β∗‖22 = σ2E
[
tr((XTX)−1)

]
.

There are various ways to understand this quantity, and we will just provide some rough
heuristics. First, notice that,

E‖β̂ − β∗‖22 =
σ2

n
E
[
tr((XTX/n)−1)

]
=
σ2

n
E
[
tr(Σ̂−1)

]
.

Assuming that Σ̂ has eigenvalues that are lower bounded by some small constant c > 0, then
we will have that,

E‖β̂ − β∗‖22 ≤
σ2d

cn
,

which is the usual parametric rate. This result can be as related to our general result on the
MLE, β̂ is the MLE, and the Fisher information is the expected Hessian of the log-likelihood,
and is just,

In(β) = nE
[
XTX

nσ2

]
=
nΣ

σ2
.

independent of β. So we can conclude that,

√
n(β̂ − β∗)

d→ N
(
0, σ2Σ−1

)
.
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31.2 High-dimensional Regression

In high-dimensional regression, we are interested in the setting where the covariate distribu-
tion has dimension d� n. The first thing to observe is that even if our old analysis worked
(it does not) the prediction error and `2 error both scale as σ2d/n which does not go to 0
as we increase the sample-size, which would mean that our methods are inconsistent. From
a minimax perspective, it turns out that this is unavoidable, i.e. it is impossible to consis-
tently estimate the regression vector β∗, when d � n, and we need to turn to structural
assumptions to make progress.

A perhaps even more alarming aspect of high-dimensional regression is that the least-squares
estimator is no longer well-defined. To see this, observe that the assumption that Σ̂ is
invertible (which is completely benign in low-dimensions) can never hold in high-dimensions.
In particular the matrix,

Σ̂ =
1

n

n∑
i=1

xix
T
i ,

has rank at most n (it is a sum of rank 1 matrices) and is a (d× d) matrix, so is clearly not
invertible if d > n. The way to picture this is that in high-dimensions there will be many
vectors β such that, y = Xβ which have least squares error of 0 (i.e. exactly pass through
all the samples).

This is a form of over-fitting, and one way to avoid this is to use regularization. This
is roughly equivalent to imposing some type of structure on the unknown β∗ and then
attempting to recover β∗ by leveraging this structure. We will again focus on versions of
sparsity, i.e. settings where β∗ is either exactly sparse (i.e. has s non-zero entries) or is
approximately sparse (i.e. has bounded `1 norm).

Analogous to the Gaussian sequence model there are two estimators that one might consider:

1. Hard-Thresholding type estimator: The analog of hard thresholding is:

β̂ = arg min
β

1

2
‖y −Xβ‖22 +

t2

2

d∑
i=1

I(βi 6= 0).

This is usually called best-subset regression. The best way to think about the nomen-
clature is to consider a closely related estimator:

β̂ = arg min
β

1

2
‖y −Xβ‖22,

subject to
d∑
i=1

I(βi 6= 0) ≤ k,
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where now we have a different tuning parameter k > 0 (instead of t). You should be
able to (with some effort) convince yourself of the fact that these two programs are
exactly equivalent, i.e. if you fix any t > 0 and solve the first program, then there is
some k for which you obtain exactly the same solution. The first form is sometimes
called the penalized-form and the second is called the constrained-form.

The natural way to implement the second estimator would be to enumerate all subsets
of size k, fit a regression on this subset and then pick the subset, and estimate β that
has lowest mean -squared error. Hence the name, “best-subset regression”.

2. Soft-Thresholding type estimator: The analog of soft thresholding is known as
the LASSO, i.e. the Least Absolute Selection and Shrinkage Operator,

β̂ = arg min
β

1

2
‖y −Xβ‖22 + t

d∑
i=1

|βi|.

Analogous to the above, one can consider a closely related estimator:

β̂ = arg min
β

1

2
‖y −Xβ‖22,

subject to
d∑
i=1

|βi| ≤ k,

again there is an equivalence, i.e. every value of t corresponds to some value of k. This
program is a convex program, and simple methods (roughly, gradient descent with
tweaks) can be used to solve it quite fast. There is typically no closed-form solution
but that is not a huge problem.

This brings us to an important distinction between the Gaussian sequence model and regres-
sion. In the Gaussian sequence model (no X) both of these programs had simple closed-form
solutions, whereas now this is no longer the case. More importantly, best-subset is compu-
tationally intractable but the LASSO is not.

With this motivation in place, let us study the prediction error of the LASSO. We begin
with some assumptions, for simplicity we will study the constrained form of the LASSO, and
further we will just assume that the tuning parameter k is chosen to be exactly ‖β∗‖1. In
practice, one might choose this tuning parameter by cross-validation or some other method.

To simplify our calculations we will also assume the design matrix X is column-normalized,
i.e. for each column j of the matrix:

n∑
i=1

X2
ij ≤ n.

You can ensure this by re-normalizing every column of X. This does change β∗ (and its `1
norm).
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Theorem 31.1 Suppose we consider the constrained-LASSO with k = ‖β∗‖1, then the pre-
diction error of our estimator, with probability at least 1− δ, satisfies:

1

n
‖Xβ̂ −Xβ∗‖22 ≤ 4σ‖β∗‖1

√
2 log(2d/δ)

n
.

This bound is exactly analogous to the bound on the error of the hard/soft-thresholding
estimator in the Gaussian sequence model when we assumed that the `1 norm of the mean
vector θ∗ was bounded. Notice again, that the prediction error goes to 0 with n, even in
settings where d� n.

This result is due to Greenshtein and Ritov and really kicked off the wave of high-dimensional
statistics. It showed that high-dimensional prediction was possible (at least in the linear
model). Several later works showed that under stronger assumptions, one could achieve small
`2 error and even exactly identify the non-zero components of β∗ (i.e. do feature selection)
in the high-dimensional setting. Furthermore, most of these phenomena generalize to gen-
eral parametric models (for instance, high-dimensional logistic regression, high-dimensional
graphical model estimation and so on).

Proof: To prove this we note that, since we selected the tuning parameter to be ‖β∗‖1,
the vector β∗ is feasible for the program and β̂ is optimal, so we have the so-called “basic
inequality”:

1

2n
‖y −Xβ̂‖22 ≤

1

2n
‖y −Xβ∗‖22,

where we divided both sides by n for convenience. Re-arranging this inequality we obtain
that,

1

2n
‖Xβ̂ −Xβ∗‖22 ≤

1

n
〈ε, Xβ̂ −Xβ∗〉 = 〈X

T ε

n
, β̂ − β∗〉,

where ε is the noise in the linear model. Holder’s inequality tells us that for any two vectors
a, b ∈ Rd,

〈a, b〉 ≤
(

d
max
i=1

ai

)( d∑
i=1

|bi|

)
.

Applying this inequality we obtain,

1

n
‖Xβ̂ −Xβ∗‖22 ≤ 2‖β̂ − β∗‖1

d
max
i=1

XT
i ε

n

where Xi denotes the i-th column of the design. Now, by the triangle inequality, ‖β̂−β∗‖1 ≤
2‖β∗‖1 (recall that we constrained our optimal solution to have `1 norm at most ‖β∗‖1), so

it only remains to bound maxdi=1
XT

i ε

n
.
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Each entry here, has a Gaussian distribution with mean 0 and variance σ2‖Xi‖22/n2 ≤ σ2/n,
using our column normalization assumption. So with probability at least 1−δ, we have that,

d
max
i=1

XT
i ε

n
≤ σ

√
2 log(2d/δ)

n
,

and combining these facts we obtain the desired bound.


