
36-705: Intermediate Statistics Fall 2019

Lecture 7: September 11
Lecturer: Siva Balakrishnan

In today’s lecture we will continue our discussion of the CLT. Before we do this we will
briefly introduce stochastic order notation.

7.1 Stochastic Order Notation

The classical order notation should be familiar to you already.

1. We say that a sequence an = o(1) if an → 0 as n → ∞. Similarly, an = o(bn) if
an/bn = o(1).

2. We say that a sequence an = O(1) if the sequence is eventually bounded, i.e. for all n
large, |an| ≤ C for some constant C ≥ 0. Similarly, an = O(bn) if an/bn = O(1).

3. If an = O(bn) and bn = O(an) then we use either an = Θ(bn) or an ∼ bn. Usually in
Stats we avoid the Θ notation (which is more common in CS) because we usually use
Θ for the parameter space.

When we are dealing with random variables we use stochastic order notation.

1. We say that Xn = op(1) if for every ε > 0, as n→∞

P(|Xn| ≥ ε)→ 0,

i.e. Xn converges to zero in probability.

2. We say that Xn = Op(1) if for every ε > 0 there is a finite C(ε) > 0 such that, for all
n large enough:

P(|Xn| ≥ C(ε)) ≤ ε.

The typical use case: suppose we have X1, . . . , Xn which are i.i.d. and have finite variance,
and we define:

µ̂ =
1

n

n∑
i=1

Xi.
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1. µ̂− µ = op(1) (WLLN)

2. µ̂− µ = Op(1/
√
n) (CLT)

As with the classical order notation, we can do some simple “calculus” with stochastic order
notation and observe that for instance: op(1) + Op(1) = Op(1), op(1)Op(1) = op(1) and so
on.

7.2 Proof of the CLT

Calculus with mgfs: We need a few simple facts about mgfs that we will quickly prove.

Fact 1: If X and Y are independent with mgfs MX and MY then Z = X + Y has mgf
MZ(t) = MX(t)MY (t).

Proof: We note that,

MZ(t) = E[exp(t(X + Y )] = E[exp(tX)]E[exp(tY )],

using independence.

Fact 2: If X has mgf MX then Y = a+ bX has mgf, MY (t) = exp(at)MX(bt).

Proof: We just use the definition,

MY (t) = E[exp(at+ btX)] = exp(at)E[exp(btX)].

Fact 3: We will not prove this one (strictly speaking one needs to invoke the dominated
convergence theorem) but it should be familiar to you. The derivative of the mgf at 0 gives
us moments, i.e.

M
(r)
X (0) = E[Xr].

Fact 4: The most important result that we also will not prove is that we can show
convergence in distribution by showing convergence of the mgfs.

Formally, let X1, . . . , Xn be a sequence of RVs with mgfs MX1 , . . . ,MXn . If for all t in an
open interval around 0 we have that, MXn(t) → MX(t), then Xn converges in distribution
to X.

7.2.1 Proof

We will follow the proof from John Rice’s (Math Stat and Data Analysis) textbook. Larry’s
notes have a nearly identical proof. First we recall that the mgf of a standard normal is
simply MZ(t) = exp(t2/2).
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Note that,

MSn(t) =

[
M(X−µ)

(
t

σ
√
n

)]n
,

using Facts 1 and 2. Now, one should imagine t as small and fixed so t/(σ
√
n) is quite close

to 0. Taylor expanding the mgf around 0, and using Fact 3 we obtain

MSn(t) =

[
1 +

t

σ
√
n
E(X − µ) +

t2

2nσ2
E(X − µ)2 +

t3

6n3/2σ3
E(X − µ)3 + . . .

]n
≈
[
1 +

t2

2n

]n
→ exp(t2/2),

using the fact that,

lim
n→∞

(1 + x/n)n → exp(x).

7.3 Only independence but not identically distributed

The CLT goes through almost exactly as stated, however, we need conditions to ensure that
one or a small number of random variables do not dominate the sum. There are many
such results but the most classical is called the Lyapunov CLT. I will state something that
is slightly weaker than the actual result. Lyapunov is one of the fathers of the theory of
dynamical systems and a student of Chebyshev’s. As is the case with Chebyshev, there are
several foundational concepts that are named for him (the CLT is only one).

Define the variance of the average:

s2n =
n∑
i=1

σ2
i .

Lyapunov CLT: Suppose X1, . . . , Xn are independent but not necessarily identically dis-
tributed. Let µi = E[Xi] and let σi = Var(Xi). Then if we satisfy the Lyapunov condition:

lim
n→∞

1

s3n

n∑
i=1

E|Xi − µ|3 = 0,

then

1

sn

n∑
i=1

[Xi − µi]
d→ N(0, 1).
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First notice that ignoring the Lyapunov condition, in the i.i.d case we just have µi = µ and
sn =

√
nσ so we get back our usual CLT.

It is worthwhile trying to understand the Lyapunov condition, and when it might be violated.
In particular, consider the extreme case, when all the random variables are deterministic,
except X1 which has mean µ1 and variance σ2

1 > 0. Then s3n = σ3
1 and the third absolute

moment E|X1− µ|3 > 0 so that the Lyapunov condition fails. Roughly, what can happen in
the non-identically distributed case is that only one random variable can dominate the sum
in which case you are not really averaging many things so you do not have a CLT.

On the other hand in a more typical case, one might have that the third absolute moments
are bounded by some constant C > 0 say and the variance of any particular random variable
is not too small. In this case,

s2n =
n∑
i=1

σ2
i ≥ nσ2

min,

and
n∑
i=1

E|Xi − µ|3 ≤ Cn.

In this case, we will have that the Lyapunov ratio ≤ C√
nσ3

min
→ 0 so that the condition is

indeed satisfied.

7.4 Multivariate CLT

The first important extension is the multivariate CLT.

Multivariate CLT: If X1, . . . , Xn are i.i.d with mean µ ∈ Rd, and covariance matrix
Σ ∈ Rd×d (with finite entries) then,

√
n(µ̂− µ)

d→ N(0,Σ).

Notes:

1. You might wonder what convergence in distribution means for random vectors. A
random vector still has a CDF, typically we define this as:

FX(x1, . . . , xd) = P(X1 ≤ x1, . . . Xd ≤ xd),

so we can still define convergence in distribution via pointwise convergence of the CDF.
In order to define points of continuity it turns out that the correct definition is that a
point is a point of continuity of the CDF if the boundary of the rectangle whose upper
right corner is (x1, . . . , xd) has probability 0.
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2. Although d can be larger than 1, it is taken to be fixed as n → ∞. Central limit
theorems, when d is allowed to grow, i.e. high-dimensional CLTs are rare and are an
active topic of research.

3. The proof of this result follows directly from the proof of the univariate CLT and
a powerful result in asymptotic statistics known as the Cramer-Wold device. The

Cramer-Wold device roughly asserts that if aTXn
d→ aTX for all vectors a ∈ Rd then

Xn
d→ X.

7.5 CLT with estimated variance

We saw that in our typical use case of the CLT (constructing confidence intervals) we needed
to know the variance σ. In practice, we most often do not know this. However, we can
estimate this quantity in the usual way,

σ̂2
n =

1

n− 1

n∑
i=1

(Xi − µ̂)2.

It turns out that we can replace the standard deviation in the CLT by σ̂ and still have the
same convergence in distribution, i.e.

√
n(µ̂− µ)

σ̂n

d→ N(0, 1).

The proof follows from a sequence of applications of Slutsky’s theorem and the continuous
mapping theorem.

Proof: First observe that if we can show that σ
σ̂n

d→ 1, then an application of Slutsky’s
theorem and the CLT gives us the desired result.

Since square-root is a continuous map, by the continuous mapping theorem, it suffices to

show that σ2

σ̂2
n

d→ 1. We will instead show the stronger statement that,

σ̂2
n

p→ σ2,

which implies the desired statement via the continuous mapping theorem (see Larry’s notes
for more details). Note that,

σ̂2
n =

1

n− 1

n∑
i=1

(Xi − µ̂)2

p→ 1

n

n∑
i=1

(Xi − µ̂)2,
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using the fact that n−1
n
→ 1. Now,

1

n

n∑
i=1

(Xi − µ̂)2 =
1

n

n∑
i=1

X2
i −

(
1

n

n∑
i=1

Xi

)2

p→ E[X2]− (E[X])2

using the WLLN. This concludes the proof.

7.6 Rate of convergence in CLT - Berry Esseen

While the central limit theorem is an asymptotic result (i.e. a statement about n → ∞) it
turns out that under fairly general conditions we can say how close to a standard normal
the average is, in distribution, for finite values n. Such results are known as Berry Esseen
bounds. Roughly, they are proved by carefully tracking the remainder terms in our Taylor
series proof but we will not do this here.

Berry-Esseen: Suppose that X1, . . . , Xn ∼ P . Let µ = E[X1], σ
2 = E[(X1 − µ)2], and

µ3 = E[|X1 − µ|3]. Let

Fn(x) = P
(√

n(µ̂− µ)

σ
≤ x

)
,

denote the CDF of the normalized sample average. If µ3 <∞ then,

sup
x
|Fn(x)− Φ(x)| ≤ 9µ3

σ3
√
n
.

This bound is roughly saying that if µ3/σ
3 is small then the convergence to normality in

distribution happens quite fast.

7.7 The Delta Method

A natural question that arises frequently is the following: suppose we have a sequence of
random variables Xn that converges in distribution to a Gaussian distribution then can we
characterize the limiting distribution of g(Xn) where g is a smooth function?

We could work this out by using the continuous mapping theorem (indeed, that is at the
heart of the proof we are about to give).

Delta Method: Suppose that,
√
n(Xn − µ)

σ

d→ N(0, 1),
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and that g is a continuously differentiable function such that g′(µ) 6= 0. Then,
√
n(g(Xn)− g(µ))

σ

d→ N(0, [g′(µ)]2).

Proof: The basic idea is simply to use Taylor’s approximation. We know that,

g(Xn) ≈ g(µ) + g′(µ)(Xn − µ),

so that,
√
n(g(Xn)− g(µ))

σ
≈ g′(µ)

√
n(Xn − µ)

σ

d→ N(0, [g′(µ)]2).

To be rigorous however we need to take care of the remainder terms. Here is a more formal
proof.

By a rigorous application of Taylor’s theorem we obtain,
√
n(g(Xn)− g(µ))

σ
= g′(µ̃)

√
n(Xn − µ)

σ
,

where µ̃ is on the line joining µ to µ̂. We know by the WLLN that µ̂
p→ µ and so µ̃

p→ µ. Since
g is continuously differentiable, we can use the continuous mapping theorem to conclude that,

g′(µ̃)
p→ g′(µ).

Now, we apply Slutsky’s theorem to obtain that,

g′(µ̃)

√
n(Xn − µ)

σ

d→ g′(µ)N(0, 1)
d
= N(0, [g′(µ)]2).

An example: Suppose we have X1, . . . , Xn ∼ P with E[X] = µ, Var(X) = σ2 < ∞.
Suppose we are interested in the distribution of Yn = exp(µ̂n). Using that fact that g′(µ) =
exp(µ), applying the Delta method we obtain,

√
n

(
exp(µ̂n)− exp(µ)

σ

)
d→ N(0, exp(2µ)).

Multivariate Delta Method: There is a multivariate analogue of the Delta method
(which is likely where the name comes from?). Suppose we have random vectorsX1, . . . , Xn ∈
Rd, and g : Rd 7→ R is a continuously differentiable function, then

√
n(g(µ̂n)− g(µ))

d→ N(0,∆µ(g)TΣ∆µ(g)),

where

∆g(µ) =


∂g(x)
∂x1
...

∂g(x)
∂xd


x=µ

,

is the gradient of g evaluated at µ.


