
36-705: Intermediate Statistics Fall 2019

Lecture 8: September 13
Lecturer: Siva Balakrishnan

We will start with more CLT variants.

8.1 The Delta Method

A natural question that arises frequently is the following: suppose we have a sequence of
random variables Xn that converges in distribution to a Gaussian distribution then can we
characterize the limiting distribution of g(Xn) where g is a smooth function?

We could work this out by using the continuous mapping theorem (indeed, that is at the
heart of the proof we are about to give).

Delta Method: Suppose that,

√
n(Xn − µ)

σ

d→ N(0, 1),

and that g is a continuously differentiable function such that g′(µ) 6= 0. Then,

√
n(g(Xn)− g(µ))

σ

d→ N(0, [g′(µ)]2).

Proof: The basic idea is simply to use Taylor’s approximation. We know that,

g(Xn) ≈ g(µ) + g′(µ)(Xn − µ),

so that,

√
n(g(Xn)− g(µ))

σ
≈ g′(µ)

√
n(Xn − µ)

σ

d→ N(0, [g′(µ)]2).

To be rigorous however we need to take care of the remainder terms. Here is a more formal
proof.

By a rigorous application of Taylor’s theorem we obtain,

√
n(g(Xn)− g(µ))

σ
= g′(µ̃)

√
n(Xn − µ)

σ
,
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where µ̃ is on the line joining µ to µ̂. We know by the WLLN that µ̂
p→ µ and so µ̃

p→ µ. Since
g is continuously differentiable, we can use the continuous mapping theorem to conclude that,

g′(µ̃)
p→ g′(µ).

Now, we apply Slutsky’s theorem to obtain that,

g′(µ̃)

√
n(Xn − µ)

σ

d→ g′(µ)N(0, 1)
d
= N(0, [g′(µ)]2).

An example: Suppose we have X1, . . . , Xn ∼ P with E[X] = µ, Var(X) = σ2 < ∞.
Suppose we are interested in the distribution of Yn = exp(µ̂n). Using that fact that g′(µ) =
exp(µ), applying the Delta method we obtain,

√
n

(
exp(µ̂n)− exp(µ)

σ

)
d→ N(0, exp(2µ)).

Multivariate Delta Method: There is a multivariate analogue of the Delta method
(which is likely where the name comes from?). Suppose we have random vectorsX1, . . . , Xn ∈
Rd, and g : Rd 7→ R is a continuously differentiable function, then

√
n(g(µ̂n)− g(µ))

d→ N(0,∆µ(g)TΣ∆µ(g)),

where

∆g(µ) =


∂g(x)
∂x1
...

∂g(x)
∂xd


x=µ

,

is the gradient of g evaluated at µ.

8.2 Uniform Laws

In the rest of today’s lecture we will begin to study what are known as uniform laws or
uniform tail bounds. Roughly, these are LLNs or tail bounds that apply to a collection
of random variables taken together. Results of the type we will develop in the next few
lectures form the theoretical basis for the study of statistical estimators, and are core topics
in statistics and machine learning. In statistics this area of study is known as empirical
process theory. For those of you planning to take 36-702 next semester this material will be
extremely useful.

Today we will study these from a relatively classical viewpoint, discussing what are called
Glivenko-Cantelli theorems, and then focus on providing motivation.
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8.3 Uniform convergence of the CDF

A classical question that was already on the mind of probabilists in the early 1930s was:

How can one estimate the CDF of a univariate random variable given a random sample?

This may not seem like a difficult question but lets try to understand it a bit deeper. We
observe X1, . . . , Xn ∼ FX , so a little bit of thought might suggest a natural estimator is the
empirical CDF, i.e.

F̂n(x) =
1

n

n∑
i=1

I(Xi ≤ x).

So far, so good. The next step might be to try to reason about this estimator. You might
have noticed that unlike in a classical statistical estimation problem we are not estimating
a simple parameter, rather we are estimating an entire function.

So let us back up a little bit. Suppose I fixed a value x and we decided to try to estimate
FX(x). We could use the empirical CDF at x, but this time it is a rather simple problem.
Observe that,

E[F̂n(x)] =
1

n

n∑
i=1

E[I(Xi ≤ x)] = P(X ≤ x) = FX(x).

The indicators are bounded random variables so we could just use Hoeffding’s bound to
conclude that,

P(|F̂n(x)− FX(x)| ≥ ε) ≤ 2 exp(−2nε2).

This shows that for a single point x, we can use simple tail bounds to say that the empirical
CDF is close to the true CDF. A more difficult question is to ask whether the empirical CDF
and true CDF are close everywhere, i.e. we would like to understand the behaviour of

∆ = sup
x∈R
|F̂n(x)− FX(x)|.

Reasoning about ∆ requires us to reason about the CDF everywhere, hence the name uniform
bounds or uniform LLNs.

The Glivenko-Cantelli theorem says that for any distribution, ∆ converges to 0 in probability.

Notes:

1. The Glivenko-Cantelli theorem is like a WLLN but it is a uniform WLLN that ensures
essentially that the WLLN is true at every point x ∈ R.
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2. There is a corresponding strong GC theorem that guarantees convergence almost surely.

3. One should pay particular attention to the fact that we can estimate the CDF of a
random variable with no assumptions. This is contrast to estimating the density of
a random variable which typically requires strong smoothness assumptions (we will
re-visit this much later in the course).

8.4 Equivalent forms, generalizations and empirical pro-

cess theory

We often denote the empirical probability of a set A as:

Pn(A) =
1

n

n∑
i=1

I(Xi ∈ A).

The quantity ∆ above can be equivalently written as,

∆ = sup
A∈A
|Pn(A)− P(A)|,

where A is a collection of sets,

A = {A(x) : A(x) = (−∞, x]} ,

since in this case, P(A(x)) = FX(x).

One could generalize the CDF question from the previous section further to ask more gener-
ally about other interesting collections of sets A, i.e. we are interested in collections of sets
A, for which we have uniform convergence, i.e.

∆(A) = sup
A∈A
|Pn(A)− P(A)|,

converges to 0 (in probability, say). This line of inquiry forms the basis for what is called
Vapnik-Cervonenkis theory who were amongst the first to ask this general question.

Even more generally, one can replace the indicators with general (integrable) functions, i.e.
let F be a class of integrable, real-valued functions, and suppose we have an i.i.d. sample
X1, . . . , Xn ∼ P , then we could be interested in,

∆(F) = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f ]

∣∣∣∣∣ .
This quantity is known as an empirical process and empirical process theory is the area
of statistics that asks questions about the convergence in probability, almost surely or in
distribution for the quantity ∆(F) for interesting classes of functions F .
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We refer to classes for which ∆(F)
p→ 0, as Glivenko-Cantelli classes. The class of functions:

F = {I(−∞, x]|x ∈ R},

which defines the uniform convergence of the CDF is an example of a Glivenko-Cantelli class.

8.5 Failure of a uniform law

In general, very complex classes of functions or sets will fail to be Glivenko-Cantelli and one
of the goals of the next few lectures is to find ways to measure the complexity of a class
of functions. This is necessary background for 36-702 where even more measures will be
introduced.

Suppose we draw X1, . . . , Xn ∼ P where P is some continuous distribution over [0, 1]. Sup-
pose further that A is all subsets of [0, 1] with finitely many elements.

Then observe that since the distribution is continuous we have that, P(A) = 0 for each
A ∈ A, however for the finite set {X1, . . . , Xn} we have that Pn(A) = 1, i.e.

∆(A) = sup
A∈A
|Pn(A)− P(A)| = 1,

no matter how large n is. So the collection of sets A is not Glivenko-Cantelli. Roughly, the
collection of sets is “too large”.

8.6 Estimation of Statistical Functionals

We discussed estimating the CDF of a random variable. In this section we provide several
examples of problems where we use estimates of the CDF. Furthermore, as we will see, we
can develop a unified understanding of such estimators using the Glivenko-Cantelli theorem.

Often we want to estimate some quantity which can be written as a simple functional of
the CDF, and a natural estimate just replaces the true CDF with the empirical CDF (such
estimators are known as plug-in estimators). As an aside, a functional is just a function
of a function. A statistical functional is a functional of the CDF. Here are some classical
examples:

1. Expectation Functionals: For a given function g, we can view the usual empirical
estimator of its expectation as a plug-in estimate where we replace the population CDF
by the empirical CDF,

Ê[g(X)] =
1

n

n∑
i=1

g(Xi) =

∫
x

g(x)dF̂n(x).



8-6 Lecture 8: September 13

2. Quantile Functionals: For an α ∈ [0, 1], the α-th quantile of a distribution is given
as:

Qα(F ) = inf{t ∈ R|F (t) ≥ α}.

Taking α = 0.5 gives the median. A natural plug-in estimator of Qα(F ) is to simply

take Qα(F̂n).

3. Goodness-of-fit Functionals: We will re-visit this topic in more detail when we
talk about hypothesis testing but often in data analysis we want to test the hypothesis
that data we have are i.i.d. from some known distribution F0. The rough idea is we
form a statistic to test this hypothesis which (hopefully) takes large values when the
distribution is not F0 and takes small values otherwise. Typical tests of this form
include the Kolmogorov-Smirnov test, where we compute the plug-in quantity:

T̂KS = sup
x∈R
|F̂n(x)− F0(x)|,

which is natural because if the true distribution is F0 we know by the Glivenko-Cantelli
theorem that TKS is small. Similarly, one can use the Cramer-von Mises test which
uses the plug-in statistic,

T̂CvM =

∫
x

(F̂n(x)− F0(x))2dF0(x).

There are many other statistical functionals for which the usual estimators can be thought
of as plug-in estimators. For example: the variance, correlation, and higher moments can all
be expressed in this fashion.

In each of the above cases we are interested in estimating some functional γ(F ) and we

use the plug-in estimator γ(F̂n). Analogous to the continuous mapping theorem, there is
a Glivenko-Cantelli theorem that provides a WLLN for these estimators. We need to first
define a notion of continuity. Suppose γ satisfies the property that for every ε > 0, there is
a δ > 0 such that if,

sup
x
|F̂n(x)− F (x)| ≤ δ,

then

|γ(F )− γ(F̂n)| ≤ ε.

For such functionals γ, it is a simple consequence of the Glivenko-Cantelli theorem that
γ(F̂n) converges in probability to γ(F ).
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8.7 All of statistics and machine learning

Perhaps the most compelling motivation for studying uniform convergence is to understand
a procedure known as empirical risk minimization. Estimators of this type include maxi-
mum likelihood estimators, and many estimators we encounter in machine learning (SVMs,
Boosting and so on). We will study this in detail in the next lecture.

Binary Classification: In the typical binary classification setting we observe a training
set {(X1, y1), . . . , (Xn, yn)} that we assume are drawn i.i.d from some distribution P . Each
Xi ∈ Rd, yi ∈ {−1,+1}.

A classifier f : Rd 7→ {−1,+1} is simply a function that takes an instance (a vector in Rd)
and outputs a label.

The broad goal of classification is to try to find a function that has low error on future unseen
data, i.e. we want a function that has low mis-classification error: P(f(X) 6= y).

For a given classifier f we can estimate its mis-classification error (risk) as:

R̂n(f) =
1

n

n∑
i=1

I(f(Xi) 6= yi),

which is simply its error on the training set. If f is some fixed classifier we know by Hoeffd-
ing’s bound (why?) that,

P(|R̂n(f)− P(f(X) 6= y)| ≥ t) ≤ 2 exp(−2nt2).

If we are trying to pick a good classifier from some set of classifiers F , then a natural way
to do this is to find the one that looks best on the training set, i.e. to choose

f̂ = arg min
f∈F

R̂n(f).

This procedure is known as empirical risk minimization. The terminology will be clearer
later on in the course. For now though, we would like to understand this procedure better.
How do we argue that in some cases this procedure will indeed select a good classifier? This
question is intricately tied to uniform convergence.

Let f ∗ be the best classifier in F . We would like to bound the excess risk of the classifier we
chose, i.e.

∆ = P(f̂(X) 6= y)− P(f ∗(X) 6= y).

The typical way to do this is to consider the decomposition:

∆ = P(f̂(X) 6= y)− R̂n(f̂)︸ ︷︷ ︸
T1

+ R̂n(f̂)− R̂n(f ∗)︸ ︷︷ ︸
T2

+ R̂n(f ∗)− P(f ∗(X) 6= y)︸ ︷︷ ︸
T3

.
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Since f̂ minimizes the empirical risk we know that T2 ≤ 0. We know that T3 is small just
by the Hoeffding argument from before, since f ∗ is a fixed classifier (i.e. does not depend on
the training data).

The key point, one that you should really think carefully about is that we cannot use
Hoeffding for the first term. The reason is that the classifier f̂ is data dependent so its
empirical risk is not the sum of independent RVs.

Instead we have to rely on a uniform convergence bound, i.e. suppose we can show that
with probability at least 1− δ/2,

sup
f∈F

[
P(f(X) 6= y)− R̂n(f)

]
≤ Θ,

then we can conclude that the excess risk with probability at least 1− δ satisfies

∆ = P(f̂(X) 6= y)− P(f ∗(X) 6= y) ≤ Θ +

√
2 log(2/δ)

n
,

so everything boils down to showing uniform convergence of the empirical risk to the true
error over the collection of classifiers we are interested in.


