
36-705: Intermediate Statistics Fall 2019

Lecture 9: September 16
Lecturer: Siva Balakrishnan

We first start off with some more motivation for studying questions of uniform convergence,
and then turn our attention to the VC dimension.

9.1 Failure of a uniform law

In general, very complex classes of functions or sets will fail to be Glivenko-Cantelli and one
of the goals of the next few lectures is to find ways to measure the complexity of a class
of functions. This is necessary background for 36-702 where even more measures will be
introduced.

Suppose we draw X1, . . . , Xn ∼ P where P is some continuous distribution over [0, 1]. Sup-
pose further that A is all subsets of [0, 1] with finitely many elements.

Then observe that since the distribution is continuous we have that, P(A) = 0 for each
A ∈ A, however for the finite set {X1, . . . , Xn} we have that Pn(A) = 1, i.e.

∆(A) = sup
A∈A
|Pn(A)− P(A)| = 1,

no matter how large n is. So the collection of sets A is not Glivenko-Cantelli. Roughly, the
collection of sets is “too large”.

9.2 Estimation of Statistical Functionals

We discussed estimating the CDF of a random variable. In this section we provide several
examples of problems where we use estimates of the CDF. Furthermore, as we will see, we
can develop a unified understanding of such estimators using the Glivenko-Cantelli theorem.

Often we want to estimate some quantity which can be written as a simple functional of
the CDF, and a natural estimate just replaces the true CDF with the empirical CDF (such
estimators are known as plug-in estimators). As an aside, a functional is just a function
of a function. A statistical functional is a functional of the CDF. Here are some classical
examples:

1. Expectation Functionals: For a given function g, we can view the usual empirical
estimator of its expectation as a plug-in estimate where we replace the population CDF
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by the empirical CDF,

Ê[g(X)] =
1

n

n∑
i=1

g(Xi) =

∫
x

g(x)dF̂n(x).

2. Quantile Functionals: For an α ∈ [0, 1], the α-th quantile of a distribution is given
as:

Qα(F ) = inf{t ∈ R|F (t) ≥ α}.

Taking α = 0.5 gives the median. A natural plug-in estimator of Qα(F ) is to simply

take Qα(F̂n).

3. Goodness-of-fit Functionals: We will re-visit this topic in more detail when we
talk about hypothesis testing but often in data analysis we want to test the hypothesis
that data we have are i.i.d. from some known distribution F0. The rough idea is we
form a statistic to test this hypothesis which (hopefully) takes large values when the
distribution is not F0 and takes small values otherwise. Typical tests of this form
include the Kolmogorov-Smirnov test, where we compute the plug-in quantity:

T̂KS = sup
x∈R
|F̂n(x)− F0(x)|,

which is natural because if the true distribution is F0 we know by the Glivenko-Cantelli
theorem that TKS is small. Similarly, one can use the Cramer-von Mises test which
uses the plug-in statistic,

T̂CvM =

∫
x

(F̂n(x)− F0(x))2dF0(x).

There are many other statistical functionals for which the usual estimators can be thought
of as plug-in estimators. For example: the variance, correlation, and higher moments can all
be expressed in this fashion.

In each of the above cases we are interested in estimating some functional γ(F ) and we

use the plug-in estimator γ(F̂n). Analogous to the continuous mapping theorem, there is
a Glivenko-Cantelli theorem that provides a WLLN for these estimators. We need to first
define a notion of continuity. Suppose γ satisfies the property that for every ε > 0, there is
a δ > 0 such that if,

sup
x
|F̂n(x)− F (x)| ≤ δ,

then

|γ(F )− γ(F̂n)| ≤ ε.

For such functionals γ, it is a simple consequence of the Glivenko-Cantelli theorem that
γ(F̂n) converges in probability to γ(F ).
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9.3 All of statistics and machine learning

Perhaps the most compelling motivation for studying uniform convergence is to understand
a procedure known as empirical risk minimization. Estimators of this type include maxi-
mum likelihood estimators, and many estimators we encounter in machine learning (SVMs,
Boosting and so on). We will study this in detail in the next lecture.

Binary Classification: In the typical binary classification setting we observe a training
set {(X1, y1), . . . , (Xn, yn)} that we assume are drawn i.i.d from some distribution P . Each
Xi ∈ Rd, yi ∈ {−1,+1}.

A classifier f : Rd 7→ {−1,+1} is simply a function that takes an instance (a vector in Rd)
and outputs a label.

The broad goal of classification is to try to find a function that has low error on future unseen
data, i.e. we want a function that has low mis-classification error: P(f(X) 6= y).

For a given classifier f we can estimate its mis-classification error (risk) as:

R̂n(f) =
1

n

n∑
i=1

I(f(Xi) 6= yi),

which is simply its error on the training set. If f is some fixed classifier we know by Hoeffd-
ing’s bound (why?) that,

P(|R̂n(f)− P(f(X) 6= y)| ≥ t) ≤ 2 exp(−2nt2).

If we are trying to pick a good classifier from some set of classifiers F , then a natural way
to do this is to find the one that looks best on the training set, i.e. to choose

f̂ = arg min
f∈F

R̂n(f).

This procedure is known as empirical risk minimization. The terminology will be clearer
later on in the course. For now though, we would like to understand this procedure better.
How do we argue that in some cases this procedure will indeed select a good classifier? This
question is intricately tied to uniform convergence.

Let f ∗ be the best classifier in F . We would like to bound the excess risk of the classifier we
chose, i.e.

∆ = P(f̂(X) 6= y)− P(f ∗(X) 6= y).

The typical way to do this is to consider the decomposition:

∆ = P(f̂(X) 6= y)− R̂n(f̂)︸ ︷︷ ︸
T1

+ R̂n(f̂)− R̂n(f ∗)︸ ︷︷ ︸
T2

+ R̂n(f ∗)− P(f ∗(X) 6= y)︸ ︷︷ ︸
T3

.
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Since f̂ minimizes the empirical risk we know that T2 ≤ 0. We know that T3 is small just
by the Hoeffding argument from before, since f ∗ is a fixed classifier (i.e. does not depend on
the training data).

The key point, one that you should really think carefully about is that we cannot use
Hoeffding for the first term. The reason is that the classifier f̂ is data dependent so its
empirical risk is not the sum of independent RVs.

Instead we have to rely on a uniform convergence bound, i.e. suppose we can show that
with probability at least 1− δ/2,

sup
f∈F

[
P(f(X) 6= y)− R̂n(f)

]
≤ Θ,

then we can conclude that the excess risk with probability at least 1− δ satisfies

∆ = P(f̂(X) 6= y)− P(f ∗(X) 6= y) ≤ Θ +

√
2 log(2/δ)

n
,

so everything boils down to showing uniform convergence of the empirical risk to the true
error over the collection of classifiers we are interested in.

9.4 Warm up - Finite Collections

The first case to consider is when the collection of sets A has finite cardinality |A|. In this
case, for a fixed A we know by Hoeffding’s inequality that,

P(|Pn(A)− P(A)| ≥ t) ≤ 2 exp(−2nt2).

However, we want something stronger we want that this convergence happens uniformly for
all sets in A, so we can use the union bound, i.e.

P(∆(A) ≥ t) = P(∪A∈A(|Pn(A)− P(A)| ≥ t))

≤
∑
A∈A

P(|Pn(A)− P(A)| ≥ t))

≤ 2|A| exp(−2nt2).

So if we want that with probability 1− δ the deviation be smaller than t we need to choose

t ≥
√

ln(2|A|/δ)
2n

.

In other words we have that with probability at least 1− δ,

∆(A) ≤
√

ln(2|A|/δ)
2n

.
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This is already quite a nice result and once again highlights one of the main reasons why
Hoeffding type exponential concentration inequalities are much more useful than Chebyshev
type concentration inequalities: to obtain uniform convergence over A we pay a price which
is logarithmic in the size of the collection.

9.5 VC dimension

Often we are interested in controlling ∆(A) for infinite classes of sets. The example from
last lecture of uniform convergence of the empirical CDF is a canonical example.

In order to define the VC dimension, and understand the associated uniform convergence we
need to understand the concept of shattering.

Shattering: Let {z1, . . . , zn} be a finite set of n points. We let NA(z1, . . . , zn) be the
number of distinct sets in the collection of sets

{{z1, . . . , zn} ∩ A : A ∈ A}.

NA(z1, . . . , zn) is counting the number of subsets of {z1, . . . , zn} that the collection of sets A
picks out. Note that, NA(z1, . . . , zn) ≤ 2n (why?).

We now define the n-th shatter coefficient of A as:

s(A, n) = max
{z1,...,zn}

NA(z1, . . . , zn).

The shatter coefficient is the maximal number of different subsets of n points that can be
picked out by the collection A.

Quick Example: Suppose we considered points in 1D and the set system was the collection
of left intervals I(−∞, t] for all t.

If we have n points on the line then we can pick out any left subset of the points, i.e.
s(A, n) = n+ 1. To verify this consider for instance the case when n = 3, and we place the
points at {0, 1, 2}, then clearly we can pick out the following subsets:

{φ}, {0}, {0, 1}, {0, 1, 2},

and no others. We will see more examples in a little bit.

VC Theorem: For any distribution P, and class of sets A we have that,

P(∆(A) ≥ t) ≤ 8s(A, n) exp(−nt2/32).

Notes: There are two noteworthy aspects of this theorem.
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1. The result is very general and it applies to any distribution on the samples, and such
results are often called distribution free.

2. The VC theorem essentially reduces the question of uniform convergence to a combi-
natorial question about the collection of sets, i.e. we now need only to understand the
shatter coefficients which are completely independent from probability/statistics.

3. The proof of this result is quite straightforward using some of the machinery (intro-
ducing a ghost sample, symmetrization) that we will see in the next lecture. If you are
curious ask me about it.

Glivenko-Cantelli: This theorem immediately implies the Glivenko-Cantelli theorem we
studied in the last lecture, i.e. that the empirical CDF converges in probability to the true
CDF. To see this we note that the shatter coefficients of the left intervals are bounded by
n+ 1 so the VC theorem tells us that,

P
(

sup
x
|F̂n(x)− FX(x)| ≥ t

)
≤ 8(n+ 1) exp(−nt2/32).

Now verifying convergence in probability is straightforward by noting that for any t > 0,
limn→∞ 8(n+ 1) exp(−nt2/32) = 0.

VC dimension: The paper of Vapnik and Chervonenkis is a work of art. They proved
the VC theorem but did not stop there. Perhaps their more remarkable contribution was a
theorem/observation about the shatter coefficients of any set system.

Let us first define the VC dimension of a set system A. The VC dimension d is the largest
integer d for which s(A, d) = 2d.

So using this definition we know that for any n > d, we have that s(A, n) < 2n. The sur-
prising combinatorial result of Vapnik and Chervonenkis (sometimes called Sauer’s lemma)
is that there is a phase transition of shattering coefficients: once it is no longer exponential
(i.e. once n > d) the shattering coefficients become polynomial in n, i.e.

Sauer’s Lemma: If A has finite VC dimension d, then for n > d we have that,

s(A, n) ≤ (n+ 1)d.

We can use Sauer’s lemma to conclude that for a system A of VC dimension d.

P(∆(A) ≥ t) ≤ 8(n+ 1)d exp(−nt2/32).

Doing the usual thing we see that with probability 1− δ,

∆(A) ≤
√

32

n
[d log(n+ 1) + log(8/δ)].

There are some important notes:
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1. If d <∞ then ∆(A)
p→ 0, and so we have a uniform LLN for the collection of sets A.

2. There are converses to the VC theorem that say roughly that if the VC dimension is
infinite then there exists a distribution over the samples for which we do not have a
uniform LLN.

3. Roughly, one should think of the VC result as saying for a class with VC dimension d,

∆(A) ≈
√
d log n

n
.

9.6 More examples

There are many examples of collections of sets for which the VC dimension is known. A few
popular ones are in Table 9.1.

Class A VC dimension VA
A = {A1, . . . , AN} ≤ log2N
Intervals [a, b] on the real line 2
Discs in R2 3
Closed balls in Rd ≤ d+ 2
Rectangles in Rd 2d
Half-spaces in Rd d+ 1
Convex polygons in R2 ∞
Convex polygons with d vertices 2d+ 1

Table 9.1: The VC dimension of some classes A.

9.7 Connecting back to binary classification

I will be a bit hand-wavy here and you should take 702 to see this done more clearly. In
binary classification, we have a collection of classifiers F . This collection induces a set
system:

A = {{{x : f(x) = 1} × {0}}
⋃
{{x : f(x) = 0} × {1}}, f ∈ F}.

If A has VC dimension d then we can use the VC theorem in a straightforward way to
conclude that with probability 1− δ,

sup
f∈F
|R̂n(f)− P(f(X) 6= y)| = ∆(A) ≤

√
32

n
[d log(n+ 1) + log(8/δ)].
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It is not too hard to verify that the VC dimension is essentially driven by the complexity of the
sets I(f(x) = 1) and their complements for the classifiers in F . This in a straightforward way,
for instance, leads to a uniform convergence guarantee for empirical risk minimization over
linear classifiers since they induce relatively simple sets (half-spaces) whose VC dimension
is well-understood.

9.8 Rademacher Complexity

Let us end today by introducing a different combinatorial quantity that we will use in the next
lecture. Suppose we have a collection of functions F , we observe samples X1, . . . , Xn ∼ P
for some distribution P and we are interested in (upper bounding) the quantity:

∆(F) = sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f ]

∣∣∣∣∣ .
Unlike the VC dimension, in the definition of the Rademacher complexity we do not maximize
over the locations of points, i.e. in some sense it is not a worst case measure of complexity. In
order to define the Rademacher complexity, we first suppose that we have a fixed collection
{x1, . . . , xn} of points.

We let ε = {ε1, . . . , εn} denote a collection of n Rademacher random variables, i.e. they
take the values {+1,−1} with equal probabilities. In this case, we can define the empirical
Rademacher complexity as:

R(x1, . . . , xn) = Eε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(xi)

∣∣∣∣∣
]
.

When we think of {x1, . . . , xn} as a random sample then the empirical Rademacher com-
plexity is a random variable. We define the Rademacher complexity of the class F as the
expectation of this quantity, i.e.

R(F) = EεEX

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
]
.

Just intuitively, we should think about when the Rademacher complexity is large, and when
it decays to 0. The Rademacher complexity is measuring the maximum absolute covariance
between {f(X1), . . . , f(Xn)} and a vector of random signs {ε1, . . . , εn}.

Intuitively, we think of a class F as too large if for many random sign vectors we can find a
function in F that is strongly correlated with the random sign vectors.
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The main utility of the Rademacher complexity is that it upper bounds the quantity ∆(F)
that we care about.

Rademacher Theorem:

E[∆(F)] ≤ 2R(F).

This theorem again might not appear to be so useful since we still need to understand the
Rademacher complexity. It turns out that the Rademacher complexity is relatively easy to
upper bound in terms of more geometric measures of the function class F (these are things
like covering numbers or bracketing numbers of F). This is analogous to how VC theory
gave us a way to go from the uniform convergence question to a combinatorial property of
the collection of sets. You will see these in more detail in 702.

Proof: At a high-level the proof will resemble what we did (in the notes) in proving
Hoeffding’s inequality. We will introduce a ghost sample, and symmetrize the empirical
process. Concretely, let {Y1, . . . , Yn} be an independent identically distributed sample. Then,

E[∆(F)] = EX

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− E[f ]

∣∣∣∣∣
]

= EX

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

f(Xi)− EYif(Yi)

∣∣∣∣∣
]

= EX

[
sup
f∈F

∣∣∣∣∣EY 1

n

n∑
i=1

[f(Xi)− f(Yi)]

∣∣∣∣∣
]

≤ EX

[
sup
f∈F

EY

∣∣∣∣∣ 1n
n∑
i=1

[f(Xi)− f(Yi)]

∣∣∣∣∣
]

≤ EX,Y

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

[f(Xi)− f(Yi)]

∣∣∣∣∣
]

We note that the distribution of the difference f(Xi)− f(Yi) is the same as the distribution
of εi(f(Xi)− f(Yi)) so we obtain,

E[∆(F)] ≤ EX,Y,ε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εi[f(Xi)− f(Yi)]

∣∣∣∣∣
]

≤ 2EX,ε

[
sup
f∈F

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣
]

= 2R(F),

which gives us the Rademacher theorem.
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If the function class is bounded, i.e. for every f ∈ F we have that ‖f‖∞ ≤ b, then the
empirical process ∆(F) is sharply concentrated around its mean, i.e.

P(|∆(F)− E[∆(F)]| ≥ t) ≤ 2 exp(−nt2/(2b2)).

This inequality is a consequence of Azuma’s inequality we studied previously. We won’t go
through this argument but it is a great exercise.

Putting this inequality together with the upper bound on the mean we obtain that for a
bounded class F with probability at least 1− δ,

∆(F) ≤ 2R(F) + b

√
2 ln(2/δ)

n
.

Noting that we obtain the concentration bound rather easily, the quantity that is often
difficult to deal with is R(F).


