
36-709: Advanced Statistical Theory I Spring 2020

Lecture 10: February 20
Lecturer: Siva Balakrishnan Scribe: Alec McClean

In the previous lecture we introduced two general concentration bounds for random matrices
(RMs), Matrix-Hoeffding and Matrix-Bernstein, the first of which we proved last lecture
using Lieb’s inequality and the Chernoff method. In these notes we recap the definitions of
Matrix-Hoeffding and Matrix-Bernstein, show an application of the Matrix-Bernstein con-
centration bound, discuss sparse covariance estimation, and basis pursuit and its application
to compressed sensing.

10.1 Review

10.1.1 Matrix-Hoeffding

Theorem 10.1 Let Q1, ...,Qn ∈ Sd×d be zero-mean random matrices. If Qi are Vi sub-
Gaussian for all i, such that
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10.1.2 Matrix-Bernstein

Theorem 10.2 If Qi are bounded such that ‖Qi‖op ≤ b then
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10.2 Applying Matrix-Bernstein to Covariance Esti-

mation

Corollary 10.3 Let x1, ..., xn ∈ Rd be IID zero-mean random vectors with covariance Σ
such that ‖xi‖2 ≤

√
b. Then for all t > 0, the sample covariance matrix Σ̂ = 1

n

∑n
i=1 xix

T
i

satisfies

P
(
‖Σ̂−Σ‖op ≥ t

)
≤ 2d exp

(
−nt2

2b(‖Σ‖op + t)

)

Proof: Define Qi := xix
T
i −Σ and note that ‖ 1

n

∑n
i=1 Qi‖op = ‖Σ̂−Σ‖op. These matrices

have controlled operator norm:

‖Qi‖op = ‖xixTi −Σ‖op
≤ ‖xixTi ‖op + ‖Σ‖op by the triangle inequality

≤ ‖xi‖22 + ‖Σ‖op converting operator to Frobenius norm

≤ b+ ‖Σ‖op by definition xi

Since Σ = E[xix
T
i ], we have ‖Σ‖op = maxv∈Sd−1 E[〈v, xi〉2] ≤ b. Therefore

‖Qi‖op ≤ b+ ‖Σ‖op ≤ 2b.

Turning to the variance of Qi, we have that V(Qi) = E[(xix
T
i )2]−Σ2 ≤ E[(xix

T
i )2]. Therefore

we can bound ‖ 1
n

∑n
i=1V(Qi)‖op like so:
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So, applying the Matrix-Bernstein bound we conclude that:

P
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This result gives us similar, but slightly worse, rates of convergence as we might obtain by
other means (such as leveraging the sub-Gaussianity of xi). Consider the example where xi
are chosen uniformly from the sphere Sd−1(

√
d), so that ‖xi‖2 =

√
d for all i = 1, ..., n. By

construction, we have E[xix
T
i ] = Σ = Id, and hence ‖Σ‖op = 1. So, by Matrix-Bernstein we

have

P
(
‖Σ̂− Id‖op ≥ t

)
≤ 2d exp

(
−nt2

2d(1 + 2t)

)
for all t ≥ 0.

This bound implies that

‖Σ̂− Id‖op �
√
d log d

n
+
d log d

n

with high probability, so the sample covariance is consistent as long as d log d
n
→ 0. This result

is almost optimal. The log d factor could be removed into this particular case by using the
fact that xi is a sub-Gaussian random vector.

10.3 Sparse Covariance Estimation

Above, we considered estimating a general unstructured covariance matrix with the sample
covariance. When a covariance matrix has additional structure, such as sparsity, then faster
rates of estimation are possible using different estimators from the sample covariance matrix.
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Let x1, ..., xn ∈ Rd be σ-sub-Gaussian zero-mean random vectors, and assume that the
covariance matrix Σ is sparse with adjacency matrix A, such that n > d. Our approach will
be to use hard thresholding on the entries of Σ̂ to get a tighter bound on ‖Σ̂− Σ‖op.

10.3.1 A Naive Approach: the Union Bound

To gain intuition for our threshold, we first show a naive bound on ‖Σ̂−Σ‖∞ by considering

an element-wise union bound on |Σ̂ij −Σij|. We can consider the diagonal and off-diagonal
elements separately. First, note that, since all xi are σ-sub-Gaussian, then

Σ̂jk =
1

n

n∑
i=1

xijxik

is (σ4, σ2)-sub-exponential for all j and k. So, applying the union bound and Bernstein
bound for random variables to both the diagonal and off-diagonal elements, we conclude
that, as long as n > log d, then with probability at least 1− δ

‖Σ̂−Σ‖∞ ≤ Cσ2

√
log d

n

Using the same method, we can show the a very similar bound for the operator norm with
only an extra d term included. With probability at least 1− δ, we have

‖Σ̂−Σ‖op ≤ Cdσ2

√
log d

n

10.3.2 Hard Thresholding

The above analysis suggests that a suitable hard threshold would be t := Cσ2
√

log d
n

with

hard thresholding operator:

Σ̃ij = Σ̂ijI
(∣∣Σ̂ij

∣∣ ≥ 2t
)

Theorem 10.4 With x1, ..., xn, the threshold t, and the hard thresholding operator Σ̃ defined
above, then with probability 1− δ

|Σ̃ij −Σij| ≤ 4tAij ∀ i, j
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and ∥∥Σ̃−Σ
∥∥
op
≤ 4t

∥∥A∥∥
op

Proof: Suppose that Σij = 0, then Aij = 0 and Σ̃ij = 0. Then, suppose the opposite, that

Σij 6= 0. Then, by applying the triangle inequality and the definition of Σ̃ij we have that∣∣Σ̃ij −Σij

∣∣ ≤ ∣∣Σ̃ij − Σ̂ij

∣∣+
∣∣Σ̂ij −Σij

∣∣ ≤ 2t+
∣∣Σ̂ij −Σij

∣∣.
Further, we established that

∣∣Σ̂ij −Σij

∣∣ ≤ 2t with probability 1− δ when bounding
∥∥Σ̂ij −

Σij

∣∣∣∣
∞. So, we conclude that, with probability at least 1− δ,

∣∣Σ̃ij −Σij

∣∣ ≤ 4tAij ∀ i, j.

So, we have shown that the matrix B := |Σ̃ − Σ| and the adjacency matrix A satisfy the
element-wise inequality Bij ≤ 4tAij. Since both A and B have only non-negative entries,
we are guaranteed that ‖B‖op ≤ 4t‖A‖op and so

‖Σ̃−Σ‖op ≤ 4t‖A‖op.

10.4 Basis Pursuit and Compressed Sensing

Consider a high-dimensional linear model, where we observe y ∈ Rn,X ∈ Rn×d such that

y = Xθ∗

where θ∗ ∈ Rd and we want to recover θ∗. In the situation where n < d, this is an underde-
termined system, so there is a whole subspace of solutions. But, what if we assume (or are
told) that there is a sparse solution to the system? Then, we know that there exists some
vector θ∗ ∈ Rd with at most s� d non-zero entries such that y = Xθ∗.

A natural candidate for solving this (non-convex) optimization problem is the `0-”norm”:

min
θ∈Rd
‖θ‖0 such that Xθ = y.

However, this optimization problem is computationally intractable. So, instead, we replace
`0-minimization with `1-minimization, which leads us to

min
θ∈Rd
‖θ‖1 such that Xθ = y.

This is now a solvable convex program! Generally, this optimization problem is referred to
as basis pursuit.
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10.4.1 Exact recovery and the restricted nullspace

Now, the natural question following from our norm-switch above is: when is solving basis
pursuit (i.e. optimization in `1) the same as solving the optimization in the
`0-norm?

Let us suppose there exists θ∗ ∈ R such that y = Xθ∗. Further, θ∗ has support S ⊂
{1, 2, ..., d}, i.e. θ∗j = 0 for j ∈ Sc. The success of basis pursuit will depend on how the
nullspace of X is related to this support and the geometry of the `1-ball. Let us define

C(S) = {∆ ∈ Rd
∣∣ ‖∆Sc‖1 ≤ ‖∆S‖1}

corresponding to the cone of vectors whose `1-norm on the support dominates their `1-1
norm off the support. We can link the nullspace of X to C(S) with the following definition:

Definition 10.5 The matrix X satisfies the restricted nullspace property with respect
to S if C(S) ∩ null(X) = {0}.

Finally, we can related the restricted nullspace property to the success of the basis pursuit
program with the following theorem

Theorem 10.6 The following two properties are equivalent:

1. The matrix X satisfies the restricted nullspace property with respect to S.

2. For any vector θ∗ ∈ Rd with support S, basis pursuit applied with y = Xθ∗ has a unique
solution θ̂ = θ∗.

Proof: In these notes, we will show that 1 =⇒ 2. Assume there exists some θ̃ 6= θ∗ that
also solves basis pursuit, i.e. Xθ̃ = y and ‖θ̃‖1 ≤ ‖θ‖1 for all θ. Then, we also have that
‖θ̃‖1 = ‖θ∗‖1. Now, we define the error vector ∆ := θ̃ − θ∗. By construction, we have that
Xθ∗ = Xθ̃ = X(θ∗ + ∆). So, X∆ = 0 and ∆ ∈ null(X).

Next, we note that θ∗Sc = 0 and show the following:

‖θ∗S‖1 = ‖θ∗‖1
≥ ‖θ̃‖1
= ‖θ∗ + ∆‖1
= ‖θ∗ + ∆S + ∆Sc‖1
= ‖θ∗‖1 + ‖∆S‖1 + ‖∆Sc‖1
≥ ‖θ∗S‖1 − ‖∆S‖1 + ‖∆Sc‖1
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Rearranging this final inequality, we see that ‖∆S‖1 ≥ ‖∆Sc‖1, which implies that ∆ ∈ C(S).
So, we have shown that ∆ ∈ null(X) and ∆ ∈ C(S). By our assumption of property 1, the
only ∆ that can satisfy this conclusion is ∆ = 0, so θ̃ = θ∗, and we have a unique solution
to basis pursuit.

10.4.2 Application: Compressed Sensing

Finally, we turn to compressed sensing, which is based on the `1-relaxation we described
above alongside the random projection method. The goal is to both compress and reconstruct
a signal β∗. Compressed sensing is motivated by the inherent wastefulness of the classical
approach to exploiting sparsity for signal compression. The standard approach is to compute,
for a given signal β∗ ∈ Rd, the full vector θ∗ = ΨTβ∗ ∈ Rd using a wavelet transform, and
then to discard all but the top s coefficients. Compressed sensing aims to avoid precomputing
the full vector θ∗ before just discarding d− s coefficients.

In compressed sensing, we take n � d random projections of the original signal β∗ ∈ Rd,
each of the form yi = 〈xi, β∗i 〉 :=

∑d
j=1 xijβ

∗
j , where xi ∈ Rd is a random vector (e.g.

xij ∼ N(0, 1)). Let X ∈ Rn×d be our measurement matrix, where the ith row of X is xTi and
y ∈ Rn is our concatenated set of random projections. Then, our problem of reconstruction
becomes finding a solution β ∈ Rd to the underdetermined linear system Xβ = Xβ∗ such
that ΨTβ is as sparse as possible. In other words, if we define X̃ := XΨ, then in the
transform domain we are trying to solve

min
θ∈Rd
‖θ‖1 such that y = X̃θ.

Now, this optimization should look very familiar, as it is the basis pursuit linear program
for which we just proved Theorem 10.6.


