36-709: Advanced Statistical Theory I Spring 2020
Lecture 10: February 20

Lecturer: Siva Balakrishnan Scribe: Alec McClean

In the previous lecture we introduced two general concentration bounds for random matrices
(RMs), Matrix-Hoeffding and Matrix-Bernstein, the first of which we proved last lecture
using Lieb’s inequality and the Chernoff method. In these notes we recap the definitions of
Matrix-Hoeffding and Matrix-Bernstein, show an application of the Matrix-Bernstein con-
centration bound, discuss sparse covariance estimation, and basis pursuit and its application
to compressed sensing.

10.1 Review

10.1.1 Matrix-Hoeffding

Theorem 10.1 Let Qq,...,Qn € S¥™9 be zero-mean random matrices. If Q; are Vi sub-
Gaussian for all v, such that

t2V;?
Eexp(tQ;) < exp ( 5 )
then

n

~>

=1

|

—nt?
275) §2dexp< n2 )
op 20

where

n

=1 op

10.1.2 Matrix-Bernstein
Theorem 10.2 If Q; are bounded such that ||Qil|op < b then

10-1



10-2 Lecture 10: February 20

where

o = H%gmi)

op

10.2 Applying Matrix-Bernstein to Covariance Esti-
mation

Corollary 10.3 Let x1,...,z, € R? be IID zero-mean random vectors with covariance %
such that ||z;|la < Vb. Then for allt > 0, the sample covariance matriz ¥ = £ 37 ;2T
satisfies

-~ —nt?
— > < -
P (IS =Sl >t) < 2dexp <zb(y|zuop+t))

Proof: Define Q; := z;2] — ¥ and note that [|[£ 3" | Qjlop = 1= - 3|lop- These matrices
have controlled operator norm:

1Qillop = llzizy” — Ellop

< Nlzix] lop + 112 lop by the triangle inequality
< lzill3 + [1Zop converting operator to Frobenius norm
< b+ ||Z||op by definition x;

Since ¥ = E[z;z] ], we have || X||op, = max,cga-1 E[(v, 2;)?] < b. Therefore

HQiHop S b+ HEHOP S 2b.

Turning to the variance of Q;, we have that V(Q;) = E[(x;2])?]—X? < E[(x;2])?]. Therefore
we can bound [|2 377" | V(Q;)][op like so:
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< ||E[(z2])? Hop by triangle inequality and IID

2 Zzn;wczi)

< |[Ellei o],
< b||E[z;z]] Hop by definition x;
==,

So, applying the Matrix-Bernstein bound we conclude that:

P (IS -, > 1) - (H >0 >t>

—nt?
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< 2dexp

This result gives us similar, but slightly worse, rates of convergence as we might obtain by
other means (such as leveraging the sub-Gaussianity of z;). Consider the example where x;
are chosen uniformly from the sphere S%1(1/d), so that ||z;|l, = v/d for all i = 1,...,n. By
construction, we have E[z;z]] = ¥ = I4, and hence ||X||,, = 1. So, by Matrix-Bernstein we
have

—nt?

P (“2 — IdHOp Z t> S 2deXp (m

) for all t > 0.

This bound implies that

~ dlogd dlogd
18— Taflop < 3/ 25 + =0
n n

with high probability, so the sample covariance is consistent as long as — 0. This result
is almost optimal. The logd factor could be removed into this partlcular case by using the
fact that z; is a sub-Gaussian random vector.

dlogd

10.3 Sparse Covariance Estimation

Above, we considered estimating a general unstructured covariance matrix with the sample
covariance. When a covariance matrix has additional structure, such as sparsity, then faster
rates of estimation are possible using different estimators from the sample covariance matrix.
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Let z1,...,2, € R? be o-sub-Gaussian zero-mean random vectors, and assume that the
covariance matrix 3 is sparse with adjacency matrix A, such that n > d. Our approach will
be to use hard thresholding on the entries of 3 to get a tighter bound on ||Z 2|op-

10.3.1 A Naive Approach: the Union Bound

To gain intuition for our threshold, we first show a naive bound on ||§3 — || by considering
an element-wise union bound on |3;; — 3;;|. We can consider the diagonal and off-diagonal
elements separately. First, note that, since all x; are g-sub-Gaussian, then

n
$ 1
'k:_E LijTik
J n 4 jri
=1

is (o, 0?)-sub-exponential for all j and k. So, applying the union bound and Bernstein
bound for random variables to both the diagonal and off-diagonal elements, we conclude
that, as long as n > log d, then with probability at least 1 — ¢

log d

I - 3| < Co?

Using the same method, we can show the a very similar bound for the operator norm with
only an extra d term included. With probability at least 1 — §, we have

IZ = Zlop < Cdo%/%

10.3.2 Hard Thresholding

The above analysis suggests that a suitable hard threshold would be ¢t := Co? l"%l with
hard thresholding operator:

M
<
I

Syl (|24] > 2)

Theorem 10.4 With x4, ..., z,, the threshold t, and the hard thresholding operator ) defined
above, then with probability 1 — o

|iij — ZZ]| S 4tAZ] V l,j
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and _
==, <4tf|afl,

Proof: Suppose that 3;; = 0, then A;; = 0 and f)ij = 0. Then, suppose the opposite, that
3i; # 0. Then, by applying the triangle inequality and the definition of 3J;; we have that

5 — S| < |8y - Syl + By - By < 20+ [y - By

Further, we established that |3;; — Zij‘ < 2t with probability 1 — ¢ when bounding ||§JU —
i ‘ |OO. So, we conclude that, with probability at least 1 — 4,

1T — =y < 4tAy; Vi, g

So, we have shown that the matrix B := |3 — 3| and the adjacency matrix A satisfy the
element-wise inequality B,;; < 4tA;;. Since both A and B have only non-negative entries,
we are guaranteed that ||B||op, < 4t||Alop and so

13 = Zlop < 4[| Allop-

10.4 Basis Pursuit and Compressed Sensing

Consider a high-dimensional linear model, where we observe y € R", X € R"*? such that
y = X0*

where §* € R? and we want to recover 6*. In the situation where n < d, this is an underde-
termined system, so there is a whole subspace of solutions. But, what if we assume (or are
told) that there is a sparse solution to the system? Then, we know that there exists some
vector 0* € R? with at most s < d non-zero entries such that y = X6*.

A natural candidate for solving this (non-convex) optimization problem is the {y-"norm”:

min [|0]lo  such that X0 = y.
OeRr?

However, this optimization problem is computationally intractable. So, instead, we replace
{p-minimization with ¢;-minimization, which leads us to

min [|]|;  such that X0 = y.
feRr?

This is now a solvable convex program! Generally, this optimization problem is referred to
as bastis pursuit.
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10.4.1 Exact recovery and the restricted nullspace

Now, the natural question following from our norm-switch above is: when is solving basis
pursuit (i.e. optimization in () the same as solving the optimization in the
ly-norm?

Let us suppose there exists 6* € R such that y = X#*. Further, 8" has support S C
{1,2,...,d}, ie. 05 =0 for j € S° The success of basis pursuit will depend on how the
nullspace of X is related to this support and the geometry of the ¢;-ball. Let us define

C(S) ={A R [ [Ase[r < [|As]l1}

corresponding to the cone of vectors whose ¢;-norm on the support dominates their ¢;-1
norm off the support. We can link the nullspace of X to C(S) with the following definition:

Definition 10.5 The matriz X satisfies the restricted nullspace property with respect
to S if C(S) N null(X) = {0}.

Finally, we can related the restricted nullspace property to the success of the basis pursuit
program with the following theorem

Theorem 10.6 The following two properties are equivalent:

1. The matriz X satisfies the restricted nullspace property with respect to S.

2. For any vector 0" € R? with support S, basis pursuit applied with y = X0* has a unique
solution 0 = 6*.

Proof: In these notes, we will show that 1 = 2. Assume there exists some 6 + 0 that
also solves basis pursuit, i.e. X0 = y and [|0][; < [|0]|; for all 6. Then, we also have that
1011 = |6*|]:. Now, we define the error vector A := 6 — #*. By construction, we have that

X0* = X0 =X(0"+A). So, XA =0 and A € null(X).

Next, we note that 05. = 0 and show the following:

10510 = 1107[1
> (1611
= (16" + Allx
=|0" + Ag + Age|ls
= 10%[ls + [[Asll1 + [[Ase
> [|0s]l — [[As]l1 + [[Ase

1

1
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Rearranging this final inequality, we see that ||Agl||; > ||Age||1, which implies that A € C(S).
So, we have shown that A € null(X) and A € C(S). By our assumption of property 1, the
only A that can satisfy this conclusion is A = 0, so § = 6*, and we have a unique solution
to basis pursuit.

10.4.2 Application: Compressed Sensing

Finally, we turn to compressed sensing, which is based on the /¢;-relaxation we described
above alongside the random projection method. The goal is to both compress and reconstruct
a signal 8*. Compressed sensing is motivated by the inherent wastefulness of the classical
approach to exploiting sparsity for signal compression. The standard approach is to compute,
for a given signal 8* € RY, the full vector * = W7 3* € R using a wavelet transform, and
then to discard all but the top s coefficients. Compressed sensing aims to avoid precomputing
the full vector #* before just discarding d — s coefficients.

In compressed sensing, we take n < d random projections of the original signal 3* € R,
each of the form y; = (z;, ) = Z?Zl z;;3;, where z; € R? is a random vector (e.g.
zi; ~ N(0,1)). Let X € R™? be our measurement matrix, where the i’ row of X is z/ and
y € R™ is our concatenated set of random projections. Then, our problem of reconstruction
becomes finding a solution 3 € R? to the underdetermined linear system X3 = X3* such
that W73 is as sparse as possible. In other words, if we define X := XW®¥, then in the
transform domain we are trying to solve

min ||6||; such that y = X4.
feRr?

Now, this optimization should look very familiar, as it is the basis pursuit linear program
for which we just proved Theorem 10.6.



