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In the previous class, we looked at basis pursuit, where in we aim to obtain a sparse solution
to the high dimensional problem

θ̂ = arg min ‖θ‖1 such that Xθ = y

i.e in the noiseless setting, and where X has a non-trivial null space. Suppose the solution
θ∗ has support S, then θ∗ can be recovered using basis pursuit if the Restricted Nullspace
(RN) property is satisfies, i.e.

null(X) ∩ {∆ ∈ Rd| ‖∆Sc‖1 ≤ ‖∆S‖1} = {0}

Today, we will look at sufficient conditions for the RN property to hold.

11.1 Pairwise Incoherence

We define the pairwise incoherence parameter as the smallest δpw such that∥∥∥∥XTX

n
− I

∥∥∥∥
∞
≤ δpw(X) (11.1)

We claim that if δpw(X) ≤ 1
2s

, then for all subsets {S ⊂ {1, 2, ..., d} s.t. |S| ≤ s}, RN(S)
(restricted nullspace property with respect to S) holds.

11.1.1 Example

An example of a matrix that satisfies the pairwise incoherence property (and for which RN
holds) is the matrix X s.t. Xij ∼ N(0, 1). Then we have the following high probability
bound on the error: ∥∥∥∥XTX

n
− I

∥∥∥∥
∞
≤
√

log d

n

In this case, if we have number of samples n ≥ s2 log d, then we get the bound
√

log d
n
≤ 1

2s
,

and the matrix X has pairwise incoherence.
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11.1.2 Proof: pairwise incoherence implies RN

We can prove that the bound on pairwise incoherence implies that RN(S) holds in the
following way: Pick some vector θ such that Xθ = 0. For some set S s.t. |S| ≤ s, we have
θ = θS + θSc , and XθS = −XθSc . We can lower bound the l2 norm of the right side as:∥∥∥∥XθS√n

∥∥∥∥2
2

= θTS
XTX

n
θS = θTS

(
XTX

n
− I

)
θS + ‖θS‖22

(i)

≥ −
∥∥∥∥XTX

n
− I

∥∥∥∥
∞
· ‖θ‖21 + ‖θS‖22

(ii)

≥ −δ ‖θ‖21 + ‖θS‖22

(iii)

≥ ‖θS‖22 (1− sδ) (11.2)

Inequality (i) comes from the inequality: uTMv ≤ ‖M‖∞ ‖u‖1 ‖v‖1
Inequality (ii) comes from 11.1 above.
Inequality (iii) comes from the inequality: ‖θS‖1 ≤

√
s ‖θS‖2

Since we know that XθS = −XθSc , we can also upper bound the l2 norm of the right side
as: ∥∥∥∥XθS√n

∥∥∥∥2
2

=

∣∣∣∣〈XθS√n , −XθSc

√
n

〉∣∣∣∣ =

∣∣∣∣∣∣θTS
(
XTX

n
− I

)
θSc + θTS θSc︸ ︷︷ ︸

=0

∣∣∣∣∣∣
≤ δ ‖θS‖1 ‖θSc‖1 ≤ δ

√
s ‖θS‖2 ‖θSc‖1 (11.3)

Relating (11.2) to (11.3), we have

‖θS‖22 (1− sδ) ≤ δ
√
s ‖θS‖2 ‖θSc‖1

‖θS‖2 ≤
δ
√
s

(1− sδ)
‖θSc‖1

‖θS‖1 ≤
√
s ‖θS‖2 ≤

sδ

(1− sδ)
‖θSc‖1

Assuming δ ≤ 1
2s

, then ‖θS‖1 ≤ ‖θSc‖1 therefore the restricted nullspace property holds. To
summarize: In order to obtain a solution to the problem Xθ = y, where n ¡ d, if n ≥ s2 log d,
then the pairwise incoherence parameter δpw ≤ 1

2s
. This implies that the restricted nullspace

property holds, and basis pursuit will result in a unique solution.
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11.2 Restricted Isometry Property (RIP)

For a given s, if ∥∥∥∥XT
SXS

n
− I

∥∥∥∥
op

≤ δRIP (X) (11.4)

Where XS is the matrix X with just the columns indexed by set S selected. For all subsets
{S ⊂ {1, 2, ..., d} s.t. |S| ≤ s}, then X is said to have restricted isometry.
We claim that if X satisfies the restricted isometry property with parameters (2s, 1

3
), then

RN(S) holds ∀ |S| ≤ s.

11.2.1 Example

For matrix X s.t. Xij ∼ N(0, 1), we fix some subset {S ⊂ {1, 2, ..., d} s.t. |S| ≤ s}. In order
to show that this has RIP(2s, 1

3
), we first give a high probability bound on the right hand

side of (11.4) for a the fixed S, then union bound to obtain a high probability bound over
all subsets S. Using the bounds on max singular value of covariance matrices, we have:

P

(∥∥∥∥XT
SXS

n
− I

∥∥∥∥
op

≥
√

2s

n
+ δ

)
≤ 2 exp

(−nδ2
2

)
Note that if n ≥ Cs, then the bound holds for fixed S w.p. ≈ 1− exp (−n).

If we pick δ �
√

s log ( ed
s
)

n
, and then apply the union bound to the above probability over all

subsets S s.t |S| ≤ s, then RIP(2s, 1
3
) will hold for n� s log ( ed

s
)

The disadvantage of using RIP is that checking that it holds is computationally intractable.

11.3 LASSO

Assuming the linear model

y = Xθ∗ + ε where ε ∼ N(0, σ2)

is correct, and θ∗ is s-sparse. We aim to answer the following questions:

1. Can we ensure
∥∥∥θ̂ − θ∗∥∥∥2

2
is small?

2. What conditions on X do we need to ensure 1?
3. What choice of (n, d, s) do we need to ensure 1?

We can formulate the LASSO problem in the following ways:
1. Regularized version

θ̂ = arg min
θ

1

2n
‖y −Xθ‖22 + λn ‖θ‖1
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2. Constrained version

θ̂ = arg min
‖θ‖1≤R

1

2n
‖y −Xθ‖22

3.
θ̂ = arg min

1
2n
‖y−Xθ‖22≤t

‖θ‖1

Looking at the regularized version of the LASSO, by the basic inequality:

1

2n

∥∥∥y −Xθ̂∥∥∥2
2

+ λn

∥∥∥θ̂∥∥∥
1
≤ 1

2n
‖ε‖22 + λn ‖θ∗‖1

Setting ∆ = θ̂ − θ∗, and noting that y −Xθ̂ = ε−X∆, we can expand the first term in the
equality above so we get:

1

2n
‖X∆‖22 −

1

n
〈ε,X∆〉+ λn

∥∥∥θ̂∥∥∥
1
≤ λn ‖θ∗‖1

The goal is then to bound ‖∆‖22. In low dimension, a bound on ‖X∆‖22 would provide
guarantees for ‖∆‖22. This is however not true in high dimensions, because X has a non-
trivial null space.


