36-709: Advanced Statistical Theory I Spring 2020
Lecture 12: February 27

Lecturer: Siva Balakrishnan Scribe: Lantian Xu

12.1 Recap

1. Basis pursuit: 0 = argmin |0, want to find y = X6*, X € R™4 #* s-sparse (Thm 7.8
MJW book, etc)

2. Restricted Nullspace Property(RN): {null(X) N {||Age
Pairwise Incoherence(PI): ||XTTX —I|lee <96

Restricted Isometry Property(RIP): For any |S| < s, H@ — Igllop <0

If PI holds with ¢ < % = RN holds

If RIP holds with § < % = RN holds

Notice that for a matrix X € R4 with N(0, 1) entries, PI holds with high probability if
n 2 s*logd, RIP holds with high probability if n > slog(<)

1 < [ Aslli}} = {0}

No ot W

12.2 Today

12.2.1 Intuition for RIP

In general we want to solve

f = arg min ||0]|o
12.1
subject to y = X0 ( )

but it is hard to compute. We replace the troublesome Ly norm by L; norm to get 9.
For [|0]lo < [|0*]lo < s, [|Allo < 2s. In order to argue that 6* is unique, it suffices to show
that || XAl|3 > 0 for any (at most) 2s-sparse vector A.

Let us now see that RIP in fact implies this condition. Observe that,

ATXTXA XTX
n

= A'( — DA +[A[2 > =3[ Al +[|A] >0

2
2 n

XA

LD
holds when ||XanS — Is|lop < 1, V |S] < 2s. This shows that an RIP condition is sufficient
for the success of the Ly minimization program.
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12.2.2 LASSO

Suppose now we observe a vector y € R™ and a matrix X € R™ ¢ that are linked via the
standard linear model y = X60* + ¢, where 6* is s-sparse and € is a vector of noise variables
whose entries have distribution N(0,0?). Our goal is to find a parameter estimation error
bound ||A[| := ||6 — 6*||> between the LASSO solution  and the unknown regression vector
0.

We have different constrained forms of the LASSO, for example

~ 1
0 = argmin — ||y — X3 (12.2)
I8t 4T
or 1
9=argmin2—lly—Xﬁ||§+Allﬂlll (12.3)
B n

These convex programs are equivalent due to Lagrangian duality theory.

In low dimension setting, we can obtain a bound without s-sparse condition:

XTX
n

[ X7 ell2l| All2

n

)\min S
( 2

if )\min(XTTX) > (. While in high dimension setting the eigenvalue condition not always holds
(for example, when d > n the rank of XX would be at most n). For this reason, we have to

come up with some useful conditions in high dimension.

Definition 12.1 (Restricted Eigenvalue condition) We say a matrix X satisfies the

restricted eigenvalue (RE) condition over S with parameters (k, «) if for any ||Agc|; <
af|Asg|l,

2
> k[|A|3
2

XA
vn
In class we discussed o = 3 case (as 7.3.2 (A2), MJW book).

Theorem 12.2 ({5 error between 6(12.2) and 6*) If 6* is s-sparse, X satisfies RE
condition with parameter (x,3) and we pick ¢ = ||#*||; in (12.2), then

5 XTe s
16 = 6"]l2 < 4l = —lloo=~ (12.4)

n

For [| 474l S

n ~

ol |§— gy 55 /2282,
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Proof: First given ¢ = ||0*||; the target vector 6* is feasible; from RE condition we have

2
N ] |
2

XA
vn
From 5-||y — X 02 < o |ly — X6*||3 and Holder inequality one can derive

mXAH§<)mxT@TA’ XTe
n

< 2l —=IloolIAlx

n n

On the other hand, following the proof of the analysis of basis pursuit we obtain that

|Age|l1 < ||Agll1, under our constraint on §. This in turn gives ||All; < 2||Ag|l1 < 2v/s||All2;
Putting together these pieces yields ||§— |2 < 4||XTT5||OO‘/7§

Theorem 12.3 (/; error between §(12.3) and 6*) If 0* is s-sparse, X satisfies RE
condition with parameter (x,3) and we have a regularization parameter lower bounded as
A > 2)| 25|, then

n

~ A
16— 6072 < Vs (12.5)

K

Proof: Condition (12.3) gives
1 ~ ~ 1 . .
gl = X613+ Mol < 5-lly — X615+ All6”]|:

Rearranging yields

2(XTe)TA . ~
T2 a6~ 181

1
XAl <
n

Rewriting #* under s-sparse condition and applying triangle inequality, we have

16712 = 101l = 116511 = 105 + Aslly = |Aselly < [As]ly = [|Ase]

Plugging in above inequality yields

1 A
5 IXAL < SE81As 1 = [As 1} (12.6)

since A > 2||22¢|| .. Here we are in a situation to apply the RE condition: 1| XA > ||Al[3.

n

Thus from the inequality in Theorem 12.2,

3 3/
SIAIR < S lash < XAl (12.7)

as desired.
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12.2.3 In-sample Prediction Error

We want to come up with some methods which do not need strong assumptions to predict
well. In general, we want to get the bound

XA

< OX[0"lx

without assumptions on X or #*(remains for later discussion).

On the other hand, a simple inspection of the above proof for the /5 error shows that under
RE and if 6* is s-sparse we obtain the faster rates for the in-sample prediction error of:

XA _ Cslogp
n n

when X in the Lagrangian LASSO is chosen as A > 2[|£-<|.

n

In more detail, from (12.6) we obtain the bound:
1
~[XAJZ < 3MAsll < 3] AL

Combining this with the RE condition, to obtain that,

3AVE]X AL

1
— | XA2 <
n” H2— \/M

Re-arranging this we obtain that,

| XAl3  Cs\?
< ;
n K

as desired.



