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12.1 Recap

1. Basis pursuit: θ̂ = arg min ‖θ‖1, want to find y = Xθ∗, X ∈ Rn×d, θ∗ s-sparse (Thm 7.8
MJW book, etc)
2. Restricted Nullspace Property(RN): {null(X) ∩ {‖∆Sc‖1 ≤ ‖∆S‖1}} = {0}
3. Pairwise Incoherence(PI): ‖XTX

n
− I‖∞ ≤ δ

4. Restricted Isometry Property(RIP): For any |S| ≤ s, ‖X
T
SXS

n
− IS‖op ≤ δ

5. If PI holds with δ ≤ 1
2s
⇒ RN holds

6. If RIP holds with δ ≤ 1
3
⇒ RN holds

7. Notice that for a matrix X ∈ Rn×d with N(0, 1) entries, PI holds with high probability if
n & s2 log d, RIP holds with high probability if n & s log( ed

s
)

12.2 Today

12.2.1 Intuition for RIP

In general we want to solve

θ̂ = arg min ‖θ‖0
subject to y = Xθ

(12.1)

but it is hard to compute. We replace the troublesome L0 norm by L1 norm to get θ̂.
For ‖θ̂‖0 ≤ ‖θ∗‖0 ≤ s, ‖∆‖0 ≤ 2s. In order to argue that θ∗ is unique, it suffices to show
that ‖X∆‖22 > 0 for any (at most) 2s-sparse vector ∆.

Let us now see that RIP in fact implies this condition. Observe that,∥∥∥∥X∆√
n

∥∥∥∥2
2

=
∆TXTX∆

n
= ∆T (

XTX

n
− I)∆ + ‖∆‖22 ≥ −δ‖∆‖22 + ‖∆‖22 > 0

holds when ‖X
T
SXS

n
− IS‖op < 1, ∀ |S| ≤ 2s. This shows that an RIP condition is sufficient

for the success of the L0 minimization program.
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12.2.2 LASSO

Suppose now we observe a vector y ∈ Rn and a matrix X ∈ Rn×d that are linked via the
standard linear model y = Xθ∗ + ε, where θ∗ is s-sparse and ε is a vector of noise variables
whose entries have distribution N(0, σ2). Our goal is to find a parameter estimation error

bound ‖∆‖2 := ‖θ̂− θ∗‖2 between the LASSO solution θ̂ and the unknown regression vector
θ∗.

We have different constrained forms of the LASSO, for example

θ̂ = arg min
‖β‖1≤t

1

2n
‖y −Xβ‖22 (12.2)

or

θ̂ = arg min
β

1

2n
‖y −Xβ‖22 + λ‖β‖1 (12.3)

These convex programs are equivalent due to Lagrangian duality theory.

In low dimension setting, we can obtain a bound without s-sparse condition:

λmin(
XTX

n
)‖∆‖22 ≤

‖X∆‖22
2n

≤
∣∣∣∣(XT ε)T∆

n

∣∣∣∣ ≤ ‖XT ε‖2‖∆‖2
n

if λmin(X
TX
n

) > 0. While in high dimension setting the eigenvalue condition not always holds

(for example, when d > n the rank of XTX
n

would be at most n). For this reason, we have to
come up with some useful conditions in high dimension.

Definition 12.1 (Restricted Eigenvalue condition) We say a matrix X satisfies the
restricted eigenvalue (RE) condition over S with parameters (κ, α) if for any ‖∆Sc‖1 ≤
α‖∆S‖1, ∥∥∥∥X∆√

n

∥∥∥∥2
2

≥ κ‖∆‖22

In class we discussed α = 3 case (as 7.3.2 (A2), MJW book).

Theorem 12.2 (`2 error between θ̂(12.2) and θ∗) If θ∗ is s-sparse, X satisfies RE
condition with parameter (κ,3) and we pick t = ‖θ∗‖1 in (12.2), then

‖θ̂ − θ∗‖2 ≤ 4‖X
T ε

n
‖∞
√
s

κ
(12.4)

For ‖XT ε
n
‖∞ .

√
log d
n

, ‖θ̂ − θ∗‖2 .
√

s log d
n

.
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Proof: First given t = ‖θ∗‖1 the target vector θ∗ is feasible; from RE condition we have

κ‖∆‖22 ≤
∥∥∥∥X∆√

n

∥∥∥∥2
2

.

From 1
2n
‖y −Xθ̂‖22 ≤ 1

2n
‖y −Xθ∗‖22 and Holder inequality one can derive

‖X∆‖22
n

≤
∣∣∣∣2(XT ε)T∆

n

∣∣∣∣ ≤ 2‖X
T ε

n
‖∞‖∆‖1

On the other hand, following the proof of the analysis of basis pursuit we obtain that
‖∆Sc‖1 ≤ ‖∆S‖1, under our constraint on θ. This in turn gives ‖∆‖1 ≤ 2‖∆S‖1 ≤ 2

√
s‖∆‖2;

Putting together these pieces yields ‖θ̂ − θ∗‖2 ≤ 4‖XT ε
n
‖∞
√
s
κ

.

Theorem 12.3 (`2 error between θ̂(12.3) and θ∗) If θ∗ is s-sparse, X satisfies RE
condition with parameter (κ,3) and we have a regularization parameter lower bounded as

λ ≥ 2‖XT ε
n
‖∞, then

‖θ̂ − θ∗‖2 ≤
3λ
√
s

κ
(12.5)

Proof: Condition (12.3) gives

1

2n
‖y −Xθ̂‖22 + λ‖θ̂‖1 ≤

1

2n
‖y −Xθ∗‖22 + λ‖θ∗‖1

Rearranging yields
1

2n
‖X∆‖22 ≤

∣∣∣∣2(XT ε)T∆

n

∣∣∣∣+ λ{‖θ∗‖1 − ‖θ̂‖1}

Rewriting θ∗ under s-sparse condition and applying triangle inequality, we have

‖θ∗‖1 − ‖θ̂‖1 = ‖θ∗S‖1 − ‖θ∗S + ∆S‖1 − ‖∆Sc‖1 ≤ ‖∆S‖1 − ‖∆Sc‖1
Plugging in above inequality yields

1

2n
‖X∆‖22 ≤

λ

2
{3‖∆S‖1 − ‖∆Sc‖1} (12.6)

since λ ≥ 2‖XT ε
n
‖∞. Here we are in a situation to apply the RE condition: 1

n
‖X∆‖22 ≥ κ‖∆‖22.

Thus from the inequality in Theorem 12.2,

κ‖∆‖22 ≤
3λ

2
‖∆S‖1 ≤

3λ
√
s

2
‖∆‖2 (12.7)

as desired.
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12.2.3 In-sample Prediction Error

We want to come up with some methods which do not need strong assumptions to predict
well. In general, we want to get the bound

‖X∆‖22
n

≤ Cλ‖θ∗‖1

without assumptions on X or θ∗(remains for later discussion).

On the other hand, a simple inspection of the above proof for the `2 error shows that under
RE and if θ∗ is s-sparse we obtain the faster rates for the in-sample prediction error of:

‖X∆‖22
n

≤ Cs log p

n
,

when λ in the Lagrangian LASSO is chosen as λ ≥ 2‖XT ε
n
‖∞.

In more detail, from (12.6) we obtain the bound:

1

n
‖X∆‖22 ≤ 3λ‖∆S‖1 ≤ 3λ

√
s‖∆‖2.

Combining this with the RE condition, to obtain that,

1

n
‖X∆‖22 ≤

3λ
√
s‖X∆‖2√
nκ

.

Re-arranging this we obtain that,

‖X∆‖22
n

≤ Csλ2

κ
,

as desired.
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