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Lecturer: Siva Balakrishnan Scribe: Mike Stanley

In the previous lecture, we continued studying properties of noisy sparse linear models.
Namely, we considered models of the form y = Xθ∗ + ε, where ε ∈ Rd is a noise vector.

In order to show that the solution to the Lasso program is well controlled, we defined
the Restricted Eigenvalue Condition, which is a generalization of the Restricted Nullspace
Property that we used when describing characteristics of the solution to basis pursuit.

Definition 13.1 The matrix X satisfies the restricted eigenvalue (RE) condition over S
with parameters (κ, α) if

1

n
‖X∆‖2

2 ≥ κ‖∆‖2
2 (13.1)

for all ∆ ∈ Cα(S), where Cα(S) = {∆ ∈ Rd | ‖∆Sc‖1 ≤ α‖∆S‖1}.

In particular, we showed in the previous lecture that if X satisfies RE, has normalized
columns, and θ∗ is s-sparse, we can obtain the following bound on the estimation error,
∆ := θ̂ − θ∗.

‖∆‖2
2 ≤

s log p

n
(13.2)

This particular bound comes from assuming gaussian noise.

13.1 Prediction Error Bounds

Above, we provide a bound on the parameter estimation error, here provide a bound on
‖X∆‖2

2. Namely, we show the following:

Theorem 13.2 Suppose we choose λ ≥ 2‖XTX
n
‖∞. Then

‖X∆‖22
n
≤ Cλ‖θ∗‖1 for some C.

We know that for various statistical models, the choice of λ = Cσ
√

log p
n

is valid with high

probability. With this in mind, we can derive the so called “slow rate” for the LASSO,
namely

‖X∆‖2
2

n
≤ Cσ‖θ∗‖1

√
log p

n
(13.3)
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Note, there is also a fast rate for the LASSO, which makes extra sparsity assumptions about
θ∗. See the derivation at the end of the previous lecture notes.

Proof:

As a quick aside suppose we first consider the constrained Lasso formulation, namely, min-
imize 1

2n
‖y − Xθ‖2

2 subject to ‖θ̂‖1 ≤ ‖θ∗‖1. By this constraint, we see that ‖∆‖1 ≤
‖θ̂‖1 + ‖θ∗‖1 ≤ 2‖θ∗‖1. Using the basic inequality, we obtain that,

‖X∆‖2
2

2n
≤ (XT ε)T∆

n
≤ ‖X

T ε

n
‖∞‖∆‖1 ≤ 2‖X

T ε

n
‖∞‖θ∗‖1.

Under the column normalization, and σ-sub-Gaussian noise assumptions we have seen pre-
viously that,

‖X
T ε

n
‖∞ ≤ C

√
log p

n
, (13.4)

yielding our desired slow rate prediction error bound.

Now returning to the Lagrangian LASSO. Using the basic inequality we obtain that,

0 ≤ ‖X∆‖2
2

2n
≤ (XT ε)T∆

n
+ λ{‖θ∗‖1 − ‖θ̂‖1}. (13.5)

From this we obtain two conclusions. First using our condition on λ we see that,

0 ≤ λ

2
‖∆‖1 + λ{‖θ∗‖1 − ‖θ̂‖1}.

This (after writing ‖∆‖1 ≤ ‖θ̂‖1 + ‖θ∗‖1) implies that ‖θ̂‖1 ≤ 3‖θ∗‖1.

Now, one again from (13.5) we see that,

‖X∆‖2
2

2n
≤ λ

2
‖∆‖1 + λ{‖θ∗‖1},

and so,
‖X∆‖22
n
≤ Cλ‖θ∗‖1. Once again using our usual scaling for λ (under the assumptions

of column normalization, and σ-sub-Gaussian noise), we once again obtain the slow rate
prediction error bound of (13.4).

13.2 Intuition for Restricted Eigenvalue Condition

Under the constrained form of the Lasso, we are minimizing the cost function Ln(θ) =
1

2n
‖y − Xθ‖2

2 subject to an `1 constraint with some radius. As our n grows with data, we
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Figure 13.1: Simple example of how curvature allows up to related the closeness of the loss
function to closeness in the parameter estimate (Wainwright pg. 208)

would expect that Ln(θ∗) ≈ Ln(θ̂). We would ultimately like to know what closeness in cost

function implies about the parameter estimation error. Define δLn := Ln(θ∗)−Ln(θ̂). Then
figure 13.2 can give us some intuition in one dimension as to why curvature is important
when reasoning about the parameter error, ∆, from the cost function error, δLn.

Analogously, when taking the problem into d dimensions, the curvature of the cost function
is captured by the structure of its Hessian matrix. For the LASSO, we can compute the
Hessian:

∇2Ln =
1

n
XTX (13.6)

Guaranteeing that the eigenvalues of the above matrix are uniformly bounded away from
zero, i.e.

‖X∆‖2
2

n
≥ κ‖∆‖2

2 > 0 (13.7)

for all ∆ ∈ Rd−{0}, gives us that we have an analogous curvature to the loss function shown
in example 13.2.

While it is intuitively clear that curvature should help us obtain rates for parameter estima-
tion (say in the `2 sense) it is perhaps less clear why under the RE condition (and sparsity
of θ∗) we were able to obtain faster rates for the in-sample prediction error (compare the
bounds at the end of last lecture and the beginning of this lecture).

Intuitively, this is related to the phenomenon of localization. Let us focus on the constrained
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LASSO. Using the basic inequality we have that the in-sample prediction error:

‖X∆‖2
2

2n
≤
〈XT ε

n
,∆
〉
.

Now in order to bound the right hand side, there are two possible strategies – we simply
upper bound it directly using Holder’s inequality, and this leads to the slow rate. We are
upper bounding the RHS quite naively.

Alternatively, if we know that ‖∆‖2 is small (which is true under RE) then we might instead

upper bound the RHS more tightly. Concretely, if we know that ‖∆‖2
2 ≤

‖X∆‖22
nκ

(RE) and
‖∆‖1 ≤ 4‖∆S‖1 (cone condition) then we could obtain tighter bounds. Roughly (we did this
more precisely at the end of the last lecture),

‖X∆‖2
2

2n
≤
〈XT ε

n
,∆
〉
≤ sup

‖∆‖22≤
‖X∆‖2

2
nκ

,‖∆‖1≤4‖∆S‖1

〈XT ε

n
,∆
〉
,

and this in turn leads to the fast rate. In effect, we are using the RE/curvature condition to
argue that ‖∆‖2 must be small (localizing the empirical process on the RHS), and that this
in turn must mean that the prediction error must be very small (leading to fast rates).

13.3 Support Recovery

As above, we are interested in the linear model:

y = Xθ∗ + ε (13.8)

where εi ∼ N (0, σ2) and ‖θ∗‖0 = s. Furthermore, we obtain our parameter estimate:

θ̂ = arg min
θ

1

2n
‖y −Xθ‖2

2 + λ‖θ‖1 (13.9)

We are interested to determine the conditions that allow supp(θ̂) = supp(θ∗).

We know that ‖θ̂ − θ∗‖2 .
√

s log p
n

and hence ‖θ̂ − θ∗‖∞ .
√

s log p
n

.

One strategy is to threshold the elements of θ̂, i.e. Ŝ = supp(T (θ̂)) where no false inclusions

would mean Ŝ ⊆ S. Using the above bound, we can reason that if

θ∗j >

√
s log p

n
(13.10)
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then Ŝ will contain element j. In general, we refer to conditions like this one, which bound
from below the magnitude of any non-zero coefficient, in order to subsequently ensure support
recovery a βmin condition.

Before we can prove any results regarding how well the above thresholding idea works, we
must define mutual incoherence.

We start with a deterministic design matrix X, and let S = {i ∈ [p]|θ∗i 6= 0}, |S| = k. Mutual
incoherence is a condition on XS, i.e. the columns of X restricted to the sparse non-zero
subset, such that

max
j∈Sc
‖(XT

SXS)−1XT
S xj‖1 ≤ 1− α (13.11)

Intuitively, we are attempting to restrict how well covariates in the complement set Sc align
with the actual support set.

We make the following additional assumption about X:

λmin

(XT
SXS

n

)
> 0 (13.12)

We won’t go into much detail about this result (see the Wainwright book) but the essence
is that the mutual incoherence condition, minimal signal strength condition, and minimum
eigenvalue condition will imply that the LASSO solution selects the correct support with
high probability.

13.3.1 Primal-Dual Witness Construction as Proof Technique

To prove this result, we introduce the idea of a subgradient and the primal-dual witness
method. Naively, to find the minimum of a convex cost function, we take a derivative and
find the vector at which the derivative equals zero. And indeed, the θ̂ that is recovered is
optimal. Namely, we find the θ̂ such that

∂J

∂θ
=
−XT (y −Xθ∗)

n
+ λ

∂‖θ‖1

∂θ
= 0 (13.13)

which will be true at θ = θ̂. Note, J refers to the constrained LASSO equation. However,
the cost function is not differentiable because of the `1 norm.

We can side-step this complication using subgradients. As the name suggests, we want to
find a function that lower bounds the gradient of our actual `1 constraint. Our subgradient,
ẑ can then be used write down the zero-subgradient condition, or “KKT” condition.
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−XT (y −Xθ∗)
n

+ λnẑ = 0 (13.14)

For LASSO, we can intuitively define the subgradient function as a modified sign function.
Namely,

∂‖θ‖1 = sign(θj) =


1 θj > 1

−1 θj < 1

[−1, 1] θj = 0

For the last condition, notice that if θj = 0 our subgradient value can be any real number

between −1 and 1. As such, we say that ẑ ∈ ∂‖θ̂‖1. Furthermore, we say that a pair

(θ̂, ẑ) ∈ Rp × Rp is primal-dual optimal if θ̂ is a minimizer and ẑ ∈ ∂‖θ̂‖1. The primal-dual
witness method constructs such a pair.

The following shows the Primal-Dual Witness Construction:

1. Set θ̂Sc = 0

2. Find (θ̂S, ẑS) such that

θ̂S = arg min
θ

1

2n
‖y −XSθS‖2

2 + λn‖θS‖1 (13.15)

and ẑS = sign(θ̂S).

3. Find ẑSc such that KKT conditions are true.

Once again the remaining details (of how to complete Step 3) can be found in the Wainwright
book.


