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14.1 Recap of LASSO Theory

Broadly, there are 4 possible goals that one may have when using the LASSO.

Prediction Estimation Variable Selection Inference

RE + sparsity ∼ s log p
n

RE + sparsity Mutual incoherence Need to debias

col norm ∼
√

log p
n
‖θ∗‖1 ‖θ̂ − θ∗‖2 ≤ s log p

n
and βmin condition ≈ RE + (approximate inv.

supp(θ̂) = supp(θ∗) cov. matrix)

14.2 Debiasing

If we want to do a hypothesis test or form a confidence interval for θ∗j , we will need to debias

the lasso solution. This is because θ̂j is not centered around θ∗j–meaning, we have a bias

problem. In order to fix this, we must add a term to our estimate θ̂ that depends on some

new term M ≈
(
XTX
n

)−1
,

θ̃ = θ̂ +
MXT (Y −Xθ̂)

n

= θ̂ +
MXT (Xθ∗ −Xθ̂)

n
+
MXT ε

n

= θ̂ +M
XT (XTX)

n
(θ∗ − θ̂) +

MXT ε

n

=⇒ θ̃ − θ∗ =

(
I −MXTX

n

)
(θ̂ − θ∗) +

MXT ε

n

=⇒ θ̃j − θ∗j
d
=

(
MXT ε

n

)
j

+

∥∥∥∥I −MXTX

n

∥∥∥∥
∞
‖θ̂ − θ∗‖1︸ ︷︷ ︸

≤|e|
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...or better yet θ̃j − θ∗j ∼ N

(
0,M

XTX

n2
Mσ2

ε

)
jj

+ e

which allows us to form a confidence interval if the error term e is small =⇒ cj = θ̃j±zα
2
σjj,

which will have the correct coverage if e is small relative to σjj.

We also observe that θ̃ isn’t as good as θ̂ in an L2 sense–that is, ‖θ̃ − θ∗‖2 � ‖θ̂ − θ∗‖2. To
answer why this happens, we can look at the expected value of its L2 distance (ignoring e),

E‖θ̃ − θ‖22 =
σ2
ε tr
(
M XTX

n
M
)

n

= σ2
ε

d

n

which is similar to the least squares estimator. So by debiasing the lasso in this way, we’ve
lost all of the sparsity—that is, we did not gain from the structure that we initially assumed.
By debiasing, we decreased bias but at the cost of the variance, which increased greatly.

We need to add some sort of restriction in order to get a useful debiased estimator. One
option may be to impose |e| � 1√

n
. If we make the usual RE and sparsity assumptions, then

• ‖θ̂ − θ‖1 → s
√

log p
n

.

On the other hand we still need to impose conditions under which we might be able to
estimate the approximate inverse covariance matrix M . Lets try to understand a simple
(very special) case. Suppose that X ∼ N(0, I) (so we actually knew the true covariance
matrix) and we chose M = I. Then we know from our previous lectures on estimating the
covariance matrix in the `∞ norm that,

•
∥∥∥I − (XTX

n

)∥∥∥
∞
�
√

s log p
n
.

This in turn suggests that as long as: s3/2 log p/
√
n → 0 then our error term |e| � 1/

√
n

and we can use debiasing for inference. The real story (when the covariance matrix of the
design is not the identity and needs to be estimated from data) is more complicated.

The motivation for debiasing comes from the KKT conditions. Suppose we solved the lasso,
then the KKT conditions give

−XT (Y −Xβ̂)

n
+ λẐ = 0 =⇒ −MXT (Y −Xβ̂)

n︸ ︷︷ ︸
centered

+λMẐ = 0
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where
−MXT (Y −Xβ̂)

n
= M

XTX

n
(β∗ − β̂) + λMẐ =

MXT ε

n

and so the bias is going to be proportional to λ. What we can do is add λMẐ to our β̂ to
fix the bias problem. To be clearer,

λMẐ =
MXT (Y −Xβ̂)

n

which is exactly what we added back to the lasso above.

14.3 Minimax Lower Bounds

Let X1, . . . , Xn ∼ P with parameter θ∗(P ) and we use estimator θ̂(P ) and loss ρ(θ̂, θ(P )).
Here, our loss is defined as a semi-metric ρ : Ω× Ω→ [0,∞). Consider the risk,

R(θ̂, θ) = Eρ(θ̂, θ(P )).

We can write the minimax risk in the following ways

M(ρ) = inf
θ̂

sup
P∈P

R(θ̂, θ(P ))

M(Φ ◦ ρ) = inf
θ̂

sup
P∈P

E[Φ ◦ ρ(θ̂, θ(P ))] with increasing function Φ on R+

which can be thought of as the worst-case risk. Note that the second formulation exists so
to allow for evaluating risks not defined by a norm. To do so, we define Φ : [0,∞)→ [0,∞).
Using this more general formulation allows us to evaluate risks defined by squared norms.

14.3.1 Estimation as multiple testing

We can reduce this problem from estimation to multiple testing. Broadly, the motivation
is that an estimation problem is at least as hard as a certain multiple testing problem—
here, we can think of having some collection of distributions a subset of them is chosen,
and we will also have a sample (from a distribution in our subet), then we must figure out
which distribution our sample came from. Our goal is to construct some function ψ(Z) that
identifies which distribution the sample Z comes from. More explicitly, we must pick out
some subset {θ1, . . . , θM} that is 2δ-separated, so

ρ(θi, θj) ≥ 2δ ∀i 6= j, then M(Φ ◦ ρ) ≥ Φ(δ) inf
ψ
Q(ψ 6= j)

where Q(ψ(Z) 6= j) is the error and j, ψ(Z) ∈ {1, . . . ,M} and X1, . . . , Xn ∼ Pθj .



14-4 Lecture 14: March 5

14.3.2 Le Cam

There 2 main ways of doing this. Option 1 is using Le Cam’s method. So for some θ1 and
θ2, we want to lower bound the testing error

inf
ψ

[
1

2
Pθ1 [ψ(Z) 6= 1] +

1

2
Pθ2 [ψ(Z) 6= 2]

]
and we know that the optimal test to use here is the likelihood ratio test (LRT). The error
of the LRT is

1

2

[
1

2
− TV (Pθ1 , Pθ2)

]
= Q(ψ(Z) 6= j).

To get a lower bound using Le Cam’s lemma, we will pick θ1 and θ2 such that

TV (P n
θ1
, P n

θ2
) < 1− ε =⇒ Q(ψ 6= j) ≥ ε

2
=⇒ M(Φ ◦ ρ) ≥ Φ(δ)

ε

2
.

In doing this, we want to pick our θ1 and θ2 to be as far away as possible without having
the TV distance get too large. With this, we can get a bound on the minimax risk.

14.3.3 Fano

Option 2 is using Fano method, which allows us to get a lower bound the testing error even
for a multiple testing problem. Fano’s method gives,

inf
ψ
Q(ψ 6= J) ≥ 1− I(Z; J) + log 2

logM

where J ∼ Unif [M ] and I(Z; J) = KL(PZJ‖PZPJ). This tells us that if I(Z; J) � logM
then inf Q(ψ 6= j) is larger than some constant (meaning the testing problem is cannot be
solved). Note that it may be more helpful to think of the mutual information as

I(Z; J) = KL(PZJ‖PZPJ) =
1

M

M∑
i=1

KL(Pθi‖Q̃) where Q̃ =
1

M

M∑
i=1

Pθi .

Considering everything above we get the following bound,

M(Φ ◦ ρ) ≥ Φ(δ)

[
1− I(Z; J) + log 2

logM

]
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14.3.4 Summary

In summary, we either

• pick θ1, θ2 with ρ(θ1, θ2) ≥ 2δ and TV(Pθ1 , Pθ2) < 1 and get LB ≥ Φ(ρ).

• pick θ1, . . . , θM with ρ(θi, θj) ≥ 2δ ∀i 6= j and I(Z; J) ≤ logM and get LB ≥ Φ(ρ).

Aside: It is difficult to calculate TV (P n
θ1
, P n

θ2
) so it will be useful to appeal to the following

fact in the future TV (P n
θ1
, P n

θ2
) ≤

√
KL(P n

θ1
, P n

θ2
) =

√
nKL(Pθ1 , Pθ2)


