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15.1 Recap of minimax lower bounds

The smallest worst-case risk among all estimators, known as the minimax risk, is defined as

M(θ(P); Φ ◦ ρ) = inf
θ̂

sup
P∈P

EP[Φ(ρ(θ̂, θ(P)))],

where the estimator θ̂ is based on n i.i.d. samples from P; ρ : Ω×Ω→ [0,∞) is a semi-metric;
Φ : [0,∞)→ [0,∞) is an increasing function.

To develop a lower bound of the minimax risk, first reduce it to a testing problem. Suppose
that {θ1, · · · , θM} are 2δ separated, i.e., ρ(θi, θj) ≥ 2δ, ∀i 6= j. Sample the random integer
J uniformly from [M ] = {1, · · · ,M}, and then sample Z ∼ PθJ . Let Q denote the joint
distribution of the pair (Z, J). Let ψ : Z → [M ] be an M -ary testing function. The minimax
risk is lower bounded by the error probability as

M(θ(P),Φ ◦ ρ) ≥ Φ(δ) inf
ψ

Q[ψ(Z) 6= J ].

Next, there are two methods for the testing problem.

1. Le Cam’s method applies to the binary testing problem, i.e., M = 2. The minimax
risk for binary testing can be expressed explicitly in terms of the TV distance as

inf
ψ

Q[ψ(Z) 6= J ] =
1

2
(1− TV(Pθ1 ,Pθ2)).

2. Fano’s method applies to the M -ary testing problem. It follows from the Fano’s in-
equality from information theory as

inf
ψ

Q[ψ(Z) 6= J ] ≥ 1− I(Z; J) + log 2

logM
.

Using the convexity of the KL divergence, the mutual information I(Z; J) can be upper
bounded by

I(Z; J) =
1

M

M∑
j=1

KL(Pθj , P̄) ≤ 1

M2

M∑
j,k=1

KL(Pθj ,Pθk).
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15.2 Some divergence measures

To develop techniques for lower bounding the error probability, some background on some
important divergence measures is required. Introduce the total variation (TV) distance, the
KL divergence, and the Hellinger distance as

TV(P,Q) =
1

2

∫
|p(x)− q(x)|dx;

KL(P,Q) =

∫
p(x) log

p(x)

q(x)
dx;

H2(P,Q) =
1

2

∫
(
√
p(x)−

√
q(x))2dx.

They are related by a sequence of inequalities as

H2(P,Q) ≤ TV(P,Q) ≤
√

2H(P,Q) ≤
√

KL(P,Q) ≤
√
χ2(P,Q).

Given n i.i.d. samples, it is natural to express the divergence between the product measures
Pn and Qn in terms of divergences between the individual pairs. The TV distance behaves
badly and is unable to decompose. The KL divergence exhibits an attractive property as

KL(Pn,Qn) =
n∑
i=1

KL(Pi,Qi) = nKL(P,Q) for i.i.d. cases.

The Hellinger distance has a similar property as

H2(Pn,Qn) = 1−
∫ √

p(xn)q(xn)dxn︸ ︷︷ ︸
affinity

= 1−
n∏
i=1

∫ √
p(xi)q(xi)dxi

= 1−
n∏
i=1

(1−H2(Pi,Qi))

= 1− (1−H2(P,Q))n ≤ nH2(P,Q) for i.i.d. cases.

15.3 Examples of Le Cam’s method

The spirit of deriving minimax lower bounds is to design parameters with relatively large
separation distance, while keeping the divergence measures relatively small.
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15.3.1 Gaussian location family

Consider X1, · · · , Xn ∼ N(θ, 1), with θ ∈ R. The metric is Φ ◦ ρ(θ̂, θ) = (θ̂ − θ)2.

Apply Le Cam’s method with two parameters θ1 = 0, θ2 = δ, which are δ separated. The two
distributions are Pθ1 = N(0, 1),Pθ2 = N(δ, 1). Calculate the KL divergence as KL(Pnθ1 ,P

n
θ2) =

nδ2/2. Set δ such that nδ2 = c for some small constant c.

M(θ(P); Φ ◦ ρ) ≥ (
δ

2
)2 1

2
(1−

√
KL(Pnθ1 ,P

n
θ2)) =

δ2

8
(1−

√
nδ2

2
) &

1

n
.

15.3.2 Uniform location family

Consider X1, · · · , Xn ∼ Unif[θ, θ + 1], with θ ∈ R. The metric is Φ ◦ ρ(θ̂, θ) = (θ̂ − θ)2.

Apply Le Cam’s method with two parameters θ1 = 0, θ2 = δ, which are δ separated. The
two distributions are Pθ1 = Unif[0, 1],Pθ2 = Unif[δ, δ + 1]. Notice that the supports of two
distributions mismatch, so the KL divergence is infinite and not applicable here. Instead,
calculate the Hellinger distance as

H2(Pθ1 ,Pθ2) =
1

2

∫ δ

0

(1− 0)2dx+
1

2

∫ 1+δ

δ

(0− 1)2dx = δ,

and therefore H2(Pnθ1 ,P
n
θ2) ≤ nδ. Set δ = c/n for some small constant c.

M(θ(P); Φ ◦ ρ) ≥ (
δ

2
)2 1

2
(1−

√
2H(Pnθ1 ,P

n
θ2)) =

δ2

8
(1−

√
2nδ) &

1

n2
.

15.3.3 Pointwise estimation of Lipschitz densities

Consider Yi = f(Xi) + εi, with Xi ∼ Unif[0, 1], εi ∼ N(0, 1), and

f ∈ FL = {f : [0, 1]→ R : |f(x)− f(y)| ≤ L|x− y|,∀x, y ∈ [0, 1], f(0) = 0}

as a Lipschitz function. The goal is to estimate θ = f(0.5). The metric is Φ◦ρ(θ̂, θ) = |θ̂−θ|.

Apply Le Cam’s method with two functions f1(x) = 0, f2(x) = L(h − |x − 0.5|)+, where
θ1 = 0, θ2 = Lh are Lh separated. The two distributions are

Pf1 : X ∼ Unif[0, 1],

y|X ∼ N(0, 1),

and

Pf2 : X ∼ Unif[0, 1]

y|X ∼ N(f2(x), 1).
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Calculate the KL divergence as

KL(Pf1 ,Pf2) =

∫
pf1(x, y) log

pf1(x, y)

pf2(x, y)
dxdy

=

∫
pf1(x, y) log

pf1(y|x)

pf2(y|x)
dxdy

=

∫
pf1(x)

∫
pf1(y|x) log

pf1(y|x)

pf2(y|x)
dy · dx

=

∫
pf1(x)KL(N(0, 1), N(f2(x), 1))dx

=

∫ 1

0

f 2
2 (x)

2
dx = 2

∫ h

0

L2x2

2
dx =

L2h3

3
.

Set h such that nL2h3 = c for some constant c.

M(θ(P); ρ) ≥ Lh

2
· 1

2
(1−

√
KL(Pnf1 ,P

n
f2

)) =
Lh

4
(1−

√
nL2h3

3
) & (

L

n
)1/3.

To summarize our three examples:

1. In normal mean estimation, we see the standard parametric rate (in low-dimensions)
of 1/

√
n (on the non-squared scale).

2. In uniform location estimation, we see a non-standard, faster than parametric rate of
1/n (on the non-squared scale).

3. For estimating Lipschitz functions at a point, we see the slower than parametric rate
of n−1/3. More generally, for estimating β-Holder functions at a point, in d dimensions,
we will obtain the rate n−β/(2β+d), using essentially the same construction.

In each case, it is straightforward to construct corresponding upper bounds.


