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Lecturer: Siva Balakrishnan Scribe: Ankur Mallick

In this lecture we will see some more applications of Fano’s Method for deriving minimax
lower bounds in high-dimensional settings. We will also see an alternate upper bound for
Mutual Information using Yang-Barron’s Lemma that improves on the upper bounds we
have been using so far.

17.1 More Examples of Fano’s Method

17.1.1 Lower Bound for Support Recovery

Consider a collection of random vectors X1, . . . , Xn ∼ N (θ, σ2Id). The problem of support
recovery seeks to recover the support of θ given X1, . . . , Xn.

Recall that if θmin = mini:θi 6=0 |θi| � σ
√

log d
n

, then the hard thresholding estimator HT(X̄)

defined as

HT(X̄)i =

{
X̄i, if X̄i & σ

√
log d
n

0, otherwise
(17.1)

where X̄ = 1
n

∑
iXi, recovers the support of θ with high probability.

To apply Fano’s inequality, consider the set of distributions {Pθ1 , . . . ,Pθd}, where

θi = [0, . . . , θmin, . . . , 0]T

is the vector with zeros at all positions except the ith positions where it has the value θmin

and Pθi is a Gaussian centered at θi with covariance σ2Id. We will use Fano’s inequality
on the test function Ψ(X1, . . . , Xn) ∈ {1, . . . , d} which seeks to identify the data generating
distribution from among {Pθ1 , . . . ,Pθd} since if we cannot solve the testing problem, we
definitely cannot solve the support recovery problem as all Pθi ’s have different support.

We know from Fano’s inequality that the testing error is lower bounded as

Q(Ψ(X1, . . . , Xn) 6= J) ≥ 1− I(X1, . . . , Xn; J) + log 2

log d
(17.2)

where I(X1, . . . , Xn; J) ≤ 1
d2

∑
i,j KL(Pθi‖Pθj) and the KL divergence between any pair

Pθj ,Pθj is given by

KL(Pθi‖Pθj) =
2nθ2min

2σ2
=
nθ2min

σ2
. (17.3)
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Since the KL divergence is the same for any such pair, I(X1, . . . , Xn; J) ≤ nθ2min

σ2 and from
(17.2) we can see that if I(X1, . . . , Xn; J) . log d then Q(Ψ(X1, . . . , Xn) 6= J) ≥ c for

some constant c. Consequently, the minimax support recovery error inf Ŝ P (Ŝ 6= S) is lower
bounded by some constant. In other words, if

nθ2min

σ2
. log d (17.4)

i.e. θmin . σ

√
log d

n
(17.5)

then support recovery is hard. This matches the condition on θmin for the hard thresholding
estimator in (17.1).

Note that, the above results are specific to the support recovery problem. We would get
different conditions on θmin if we used a different loss like the Hamming distance between
estimated and true parameters, or if only cared about recovering elements of θ greater than
a certain threshold value etc.

17.1.2 Lower Bounds for Sparse Estimation

To derive lower bounds for sparse estimation we will need to modify the Varshamov-Gilbert
constrution that we used earlier to construct packing sets. The modified bound is given by
the following Lemma from [1]

Lemma 17.1 Define Ω̃ = {ω ∈ {0, 1}d: ‖ω‖0 ≤ S}. Then there exists Ω′ ⊆ Ω̃ such that:

• every ω ∈ Ω′ has ‖ω‖0 = S,

• every pair ωi,ωj ∈ Ω′ has Hamming distance dH(ωi,ωj) ≥ S/2,

• |Ω′| ≥ c
(
de
S

)S
.

This is important because even though the `0-ball Ω̃ has cardinality |Ω̃| ≤
∑S

k=1

(
d
k

)
∼
(
de
S

)S
,

all its elements are not well separated. However the above lemma tells us that we can find
a packing of well separated vectors that is a subset of |Ω̃| and has the same cardinality
(order-wise).

17.1.2.1 Lower Bound for `0-Sparsity

Consider a collections of random vectors X1, . . . , Xn ∼ N (θ, σ2Id) where ‖θ‖0 ≤ S (`0-
Sparsity). The hard thresholding estimator as defined in (17.1) has the following upper
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bound on the expected `2-error

E[‖θ̂ − θ‖22] .
σ2S log d

n
(17.6)

where we use θ̂ denote the hard thresholding estimate of θ.

To find a lower bound, we first construct a packing set of M :=
(
de
S

)S
, S−sparse vectors with

the Hamming distance between any two elements ωi,ωj lower bounded as dH(ωi,ωj) ≥ S/2
(as per Lemma 17.1).

Consider θi’s generated as θi = ωi × θmin where θmin = mini:θi 6=0 |θi|. Once again, to apply
Fano’s inequality, we will consider the set of distributions {Pθ1 , . . . ,PθM}, (Pθi is a Gaussian
centered at θi with covariance σ2Id) and the corresponding testing function Ψ(X1, . . . , Xn) ∈
{1, . . . ,M}.

Observe that,

KL(Pθi‖Pθj) =
n

2σ2
‖θi − θj‖22 ≤

2nSθ2min

2σ2
=
nSθ2min

σ2
(17.7)

Since log |Ω′| & S log de
S

, we can get a lower bound from Fano if KL(Pθi‖Pθj) . S log de
S

i.e.

nSθ2min

σ2
. S log

de

S
(17.8)

or θmin . σ

√
1

n
log

de

S
(17.9)

If θmin satisfies the above condition the lower bound then the minimax risk is lower bounded
by the separation (δ) between two elements of the packing. From Lemma 17.1 we know that
the separation satisfies,

‖θi − θj‖22 ≥ dH(ωi,ωj)θ
2
min ≥

S

2
θ2min (17.10)

Combining (17.9) and (17.10) we get the lower bound on the minimax risk,

M(Φ ◦ ρ) ≥ cΦ(δ) =
cS

2

σ2

n
log

(
ed

S

)
' σ2S log(d/S)

n
(17.11)

which matches the upper bound for sub-linear sparsity.

17.1.2.2 Lower Bound for `1-Sparsity

Consider a collections of random vectors X1, . . . , Xn ∼ N (θ, σ2Id) where ‖θ‖1 ≤ R (`1-

Sparsity). The estimator θ̂ obtained by solving the corresponding `1-minimization problem
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has expected `2 error (when
√
n� d) of:

E[‖θ̂ − θ‖22] . σR

√
log d

n
. (17.12)

Now we show a corresponding lower bound.

To find a lower bound, we once again construct a packing set of M :=
(
de
K

)K
, K−sparse

vectors with the Hamming distance between any two elements ωi,ωj lower bounded as
dH(ωi,ωj) ≥ K/2 (as per Lemma 17.1). The crucial difference from the `0-case is that here
K is a free parameter which we can choose (since the constraint is on the `1-norm and not
on the `0-norm).

Consider θi’s generated as θi = ωiR/K which ensures that ‖θ‖1 ≤ R and {Pθ1 , . . . ,PθM} as
earlier.

KL(Pθi‖Pθj) =
n

2σ2
‖θi − θj‖22 ≤

n

2σ2
× 2K × R2

K2
=
nR2

Kσ2
(17.13)

Therefore we need to ensure that nR2

Kσ2 . K log
(
ed
K

)
i.e.

K &
1

σ

√
nR2

log(ed/K)
(17.14)

The above condition can be satisfied if
√
n� d, otherwise we should pick K as the minimum

of the RHS of (17.14) and d (recall that K is a parameter which we are free to pick to
maximize the lower bound).

To simplify the rest of the analysis we suppose that
√
n � d1−ε for some small constant

ε > 0. In this case, we can see that the choice,

K &
1

σ

√
nR2

log d
, (17.15)

works for our purposes.

This in turn yields,

Φ(δ) ≥ K

2
× R2

K2
=
R2

K
(17.16)

=
R2σ√
nR2

√
log d = σR

√
log d

n
(17.17)

which is the lower bound on the minimax risk M (since by substituting our choice of K
in (17.14) into Fano’s Inequality we can lower bound the Mutual Information term by a
constant) and matches the upper bound in (17.12).
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17.2 Alternate Upper Bound for Mutual Information

So far we have only considered local packings to bound the mutual information as

I(Z; J) ≤ sup
θi,θj

KL(Pθi‖Pθj) (17.18)

where KL(Pθi‖Pθj) is the KL diameter of the packing {θ1, . . . , θM}

Consider θ1, θ2 with disjoint support. The KL diameter is infinite due to disjoint support
but the mutual information is always upper bounded by the log of the cardinality of the set,
as long as the set has finite cardinality, because

I(Z; J) =
1

M

M∑
j=1

KL(Pθj‖
1

M

M∑
i=1

Pθi) =
1

M

M∑
j=1

EP
θj

[
log

Pθj
1
M

∑M
i=1 Pθi

]
≤ logM (17.19)

Thus in this case I(Z; J) ≤ log 2.

Thus we see two upper bounds on the Mutual Information - one which uses a local packing,
and another which relies on the cardinality of the packing set. The following lemma enables
us to combine these two bounds through a global backing to improve on the above two
bounds

Lemma 17.2 (Yang-Barron) If NKL(P , ε) is the covering number of P in the
√

KL metric
then

I(Z; J) ≤ inf
ε>0

{
ε2 + logNKL(P , ε)

}
(17.20)

Proof: Consider a packing {θ1, . . . , θM} of P . We know that

I(Z; J) =
1

M

M∑
j=1

KL(Pθj‖P̄) (17.21)

where P̄ = 1
M

∑M
i=1 Pθi . Also observe that

1

M

M∑
j=1

KL(Pθj‖Q) =
1

M

M∑
j=1

EP
θj

[
log

(
Pθj
Q
× P̄

P̄

)]
(17.22)

=
1

M

M∑
j=1

KL(Pθj‖P̄) + KL(P̄‖Q) (17.23)
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Combining (17.21) and (17.23) and observing that KL(P̄‖Q) ≥ 0 (always), we see that

I(Z; J) ≤ 1

M

M∑
j=1

KL(Pθj‖Q) (17.24)

for any distribution Q. We choose Q to be the uniform distribution over an ε cover in the√
KL metric, {γ1, . . . ,γNKL

} i.e.

Q =
1

NKL

NKL∑
j=1

Pγj (17.25)

Thus,

I(Z; J) ≤ 1

M

M∑
j=1

KL(Pθj‖Q) (17.26)

=
1

M

M∑
j=1

EP
θj

[
log

(
Pθj

1
NKL

∑NKL

j=1 Pγj

)]
(17.27)

≤ 1

M

M∑
j=1

EP
θj

[
log

(
Pθj

Pγ̃j/NKL

)]
(17.28)

where Pγ̃j is the element of the cover that is closest to Pθj in the
√

KL metric. Therefore

I(Z; J) ≤ 1

M

M∑
j=1

KL(Pθj‖Pγ̃j) + logNKL (17.29)

KL(Pθj‖Pγ̃j) ≤ ε2 since {γ1, . . . ,γNKL
} is an ε cover in the

√
KL metric. Therefore

I(Z; J) ≤ inf
ε>0

{
ε2 + logNKL(P , ε)

}
(17.30)

The Yang-Barron Lemma is applied to upper bound the mutual information in Fano’s In-
equality in the following steps

1. Pick the smallest ε such that ε2 ≥ logNKL(P , ε) which balances the two terms on the
right-hand side of the Yang-Barron Lemma and implies that I(Z; J) ≤ 2ε2.

2. Find a 2δ packing {θ1, . . . , θM} of P with the largest possible δ such that logM ≥ 2ε2.

3. The above two points implies that I(Z : J) ≤ logM for this choice of δ and by Fano’s
Inequality the testing error Q(Ψ 6= J) is lower bounded by a constant due to which
the minimax risk is lower bounded as M≥ Φ(δ)

The main advantage of using the Yang-Barron Lemma is that we can decouple picking ε and
picking the picking whereas earlier we had to do both together. Now, we have abstracted the
problem of computing an upper bound on the mutual information to finding the KL metric
entropy and the packing number of the set.
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