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Last time, we introduced the Modified Varshamov-Gilbert bound and we applied it to prove
some high-dimensional lower bounds: (1) variable selection lower bound; (2) estimating
sparse mean when θ is s-sparse; (3) lower bound for estimating θ when the vector is `1-
sparse.

Today, we continue to look at Yang-Barron method for proving minimax lower bounds.

18.1 Yang-Barron Method

The high level goal here is to improve the upper bound on mutual information, to obviate
the need to do local packing. Here is a mini lemma we proved in the last lecture that upper
bounds the mutual information I(Z; J).

Lemma 18.1

I(Z; J) =
1

M

M∑
i=1

KL(Pθi , P )

≤ 1

M

M∑
i=1

KL(Pθi , Q)

where P =
∑M

i=1 Pθi and Q is any other distribution.

In general, there are two ways to upper bound mutual information: (1) upper bound by KL
diameter, which is the maximum KL-divergence between any two distributions (2) upper
bound by log(M) in cardinality based method. Yang-Barron method essentially makes a
statement about the trade-offs between the above two upper bounds.

Theorem 18.2 (Yang-Barron Method)
Let NKL(ε,P) denote the ε-covering number of P in the square-root KL divergence. Then
the mutual information is upper bounded as

I(Z; J) ≤ infε>0{ε2 + logNKL(ε,P)}

where, NKL is the number of distributions to cover P in the semi-metric
√
KL.
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Note that one significance of the statement is that nothing on the RHS depends on what
the packing is, namely the collection of θs, {θ1, ..., θM}. It only depends on the class of
distributions P from which we’re selecting the packing from.

Proof: By Lemma 18.1, we have

I(Z; J) ≤ 1

M

M∑
i=1

KL(Pθi , Q)

We will now pick a distribution Q to get a bound that we want. Let Q = 1
NKL

∑NKL

i=1 Pγi ,

where {γ1, ..., γNKL} is a
√

KL ε-covering of P . Now, plugging in Q,

I(Z; J) ≤ 1

M

M∑
i=1

KL(Pθi ,
1

N

N∑
j=1

Pγj)

∀θi, there is some γ that’s closest to it, and we call it γ̃i.

I(Z; J) ≤ 1

M

M∑
i=1

∫
Pθi log

Pθi
1
N

∑N
j=1 Pγj

≤ 1

M

M∑
i=1

∫
Pθi log

Pθi
1
N
Pγ̃i

≤ 1

M

M∑
i=1

KL(Pθi , Pγ̃i) + logN

≤ ε2 + logN

where the first term is a diameter based bound, and the second term is a cardinality based
bound.

We have a choice here to pick ε. If we pick ε to be large, then we pay a large diameter price
and a small cardinality price; and, if we pick ε to be small, then we pay a small diameter
price and a large cardinality price.

18.2 Yang-Barron Application

18.2.1 Application Procedure

Procedure for applying Yang-Barron method:

1. We would like to find an ε such that
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infε>0{ε2 + logNKL}

Since as ε increases, ε2 increases and logNKL decreases, one way to balance these two
terms is to pick the smallest ε such that ε2 ≥ logNKL(P , ε).

2. Choose the largest δ that we can find a 2δ-packing {θ1, ..., θM} that satisfies the lower
bound

logM(δ) ≥ 2ε2

3. Then, we get M ≥ Φ(δ)

Yang-Barron essentially decoupled step 1 and step 2 for us so that we don’t have to reason
about them simultaneously.

18.2.2 Example: Non-parametric Regression with Sobolev Func-
tions

In non-parametric regression with sobolev functions, f =
∑∞

j=1 θjφj,
∑∞

j=1 θ
2
i ≤ 1, where

θj’s are coefficients and φj’s are basis vectors. And, we have the Sobolev Ellpsoid constraint
that

∑∞
j=1 θ

2
j j

2α ≤ 1.

One way to think about the constraint is that if we plug in α = 1, then the M -th coefficient
must satisfy M2αθ2M ≤ 1, meaning that θM must decay at some rate. Consequently, the
higher-order coefficients must be really small and we can think of it as an ordered sparsity
constraint.

We know from Chapter 5 that logN(F , ‖.‖2 , δ) �
(
1
δ

)1/α
, where F is the collection of Sobolev

functions. Using Yang-Barron, we can prove a lower bound just using the knowledge of this
metric entropy.

We follow the steps in 18.2:

1. Under the general regression setup, where X is from some distribution say X ∼
Unif[0, 1] and Y |X ∼ N(f(x), σ2), we’ve derived before that

KL(Pf1 , Pf2) = n
2σ2 ‖f1 − f2‖22

We want to ensure that
√

KL ≤ ε,∀f1, f2, namely constructing a ε-covering in the√
KL semi-metric.

√
KL =

√
n

2σ2
‖f1 − f2‖22 ≤ ε

‖f1 − f2‖2 ≤
ε
√

2σ2

√
n
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which tells us that it’s sufficient to construct a ε
√
2σ2√
n

-covering in the `2 metric. Now,
we want to ensure

ε2 ≥ logNKL(F , ε)

ε2 ≥ (

√
n

ε
√

2σ2
)1/α

ε2+1/α ≥ nα/2

ε ≥ n
1

2(2α+1)

2. The second step is to pick the largest δ such that logM(δ) ≥ ε2

1

δ

1/α

≥ n
1

2α+1

δ ≤ n−
α

2α+1

3. M≥ cΦ(δ) = cδ2 ≥ cn−
2α

2α+1

Note that this is the usual non-parametric rate for Sobolev functions and we just needed to
know the metric entropy to get this lower bound.

18.3 Non-parametric Maximum Likelihood Methods

The high level goal is to find out how Le Cam shows up in upper bound. Roughly, if we can
find an ε such that nε2 ≥ some metric entropy, then he can show a corresponding estimator
that achieves ε as the rate of convergence.

Let’s first define the non-parametric maximum likelihood problem. Observe X1, ..., Xn ∼
P0 ∈ P . We’ll do maximum likelihood over the class P , namely that

P̂n = arg max
P∈P

`n(P )

We should regard the above as some description of the estimator. An alternative method is
called the method of sieves. The idea is that if the class P is too big, then we just pick a
subset of it {P1, ..., PN}, and optimize over this small subset

P̂n = arg max
P∈{P1,...,PN}

`n(P )

The high level goal is to analyze P̂n by asking how far is P̂n from P0 in some metric, and
we’ll use the Hellinger metric (i.e. Eh(P̂n, P0) or P(h(P̂n, P0) ≥ δ)).
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Claim: (Informal) If we can find an ε∗ such that nε∗
2 ≥ logH(P , ε∗), then

P(R(P̂n, P0) ≥ Cε∗) ≤ C1 exp{−C2nε
∗2}

where P̂n is the sieve MLE.

The above claim basically says that Le Cam determines the rate of convergence of sieve MLE
in the Hellinger distance. Note that Hellinger and

√
KL are close (recall that H2 ≤ TV ≤

H ≤
√

KL).

To prove this claim, we need to understand the relation between Hellinger distance and
likelihood. Intuitively, we want to say that if we take a distribution from the net {P1, ..., Pn}
that is far away from P0 in Hellinger (a distribution that’s not within an ε ball around
P0 in Hellinger distance), then it’s unlikely that the distribution picked is maximizing the
likelihood. In particular, we want such likelihood to be exponentially small so that we can
union bound over all such distributions.

Lemma 18.3 (Wong-Shen: probability inequality for the likelihood ratio)
If for some distribution P such that h(P, P0) ≥ δ, then

P(
n∏
i=1

P (Xi)

P0(Xi)
≥ exp{−nδ

2

2
}) ≤ exp{−nδ

2

4
}.

The above lemma is basically saying that the likelihood ratio is exponentially small in the
Hellinger distance with high probability. If P is far away from P0, namely that δ is large,
then this likelihood ratio is small.

Proof: The importance of the proof is to see where Hellinger comes up in likelihood ratio.

P(
n∏
i=1

P (Xi)

P0(Xi)
≥ exp{−nδ

2

2
}) = P(

n∏
i=1

√
P (Xi)

P0(Xi)
≥ exp{−nδ

2

4
})

≤ E[
n∏
i=1

√
P (Xi)

P0(Xi)
]× exp{nδ

2

4
}

= (

∫ √
P × P0)

n × exp{nδ
2

4
}

= (1− H2

2
)n × exp{nδ

2

4
}

= (1− δ2

2
)n × exp{nδ

2

4
}

≤ exp{−nδ
2

4
}
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where H2 = 2− 2
∫ √

P × P0 and the second step is by Markov Inequality.

Now, we are going to construct {P1, ..., PN} by using a Hellinger cover of P . We will just
maximize the likelihood over this collection, but one difficulty is that P0 may not be in the
sieve.

If P0 is a sieve member, then we know that for P ∈ P ,

P(
L(P )

L(P0)
≥ 1) ≤ exp{−nh2}

By union bound over the net,

P(∃j : h(Pj, P0) ≥ ε,
L(Pj)

L(P0)
≥ 1) ≤ N exp{−nh2}

Le Cam makes sure that we pick an ε large enough, namely nε2 ≥ logN , so that probability
N exp{−nh2} = exp{−nε2+logN} goes to 0. On a high level, one way to think about where
Le Cam comes from is a union bound combined with the Wong-Shen exponential inequality.

The more difficult case is when P0 is not in the sieve, where we will analyze the likelihood
ratio of some Pj closest to P0, in the next lecture.


