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In the previous lecture, we consider the Sieve maximum likelihood estimator in the non-
parametric density estimation problem. For X1, X2, ..., Xn ∼ p0 ∈ P , we want an estimator
of the distribution p0. In order to do so, we construct a sieve {p1, p2, ..., pN(ε)} that forms a
ε-Hellinger cover of P . We then choose a distribution p̂ from the sieve that maximizes the
likelihood. We will analyze the property of this sieve estimator in this lecture, and the main
result is:

Theorem 19.1 If nε2 ≥ 8 logN(ε), then :

P(h(p̂, p0) ≥ 2ε) ≤ 2 exp(−1

8
nε2)

We will now prove this result.

19.1 Analysis of sieve estimator

A Sieve P̃ is an ε-Hellinger cover of P , which means that ∀p ∈ P , there exists p∗ ∈ P̃ such
that h(p, p∗) ≤ ε. It should also satisfy one of the following conditions:

(1) ∃p∗ ∈ P̃ , such that p0
p∗
≤ U for some constant U ≤ 11

8
universally;

(2) ∃p∗ ∈ P̃ , such that χ2(p0, p
∗) ≤ Uε2for some constant U ≤ 3

8
universally.

Notice that (1) actually implies (2). We will use the weaker condition (2) in the following
proof of Theorem 19.1. We note in passing that the same proof can be modified (by adjusting
various constants) when U is simply some universal constant (not upper bounded by 11/8
or 3/8 as above). Before this proof, recall the Wong-Shen Lemma that we proved in the
previous lecture:

Lemma 19.2 (Wong-Shen Lemma) If h(p, p0) ≥ δ, then the likelihood ratio satisfies:

PX1,X2,...,Xn∼p0(
Ln(p)

Ln(p0)
≥ exp(−nδ

2

2
)) ≤ exp(−nδ

2

4
)
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Proof: According to the definition of sieve, there exists p∗ ∈ P̃ , such that h(p0, p
∗) ≤ ε.

If p̂ = p∗, then h(p̂, p0) ≤ 2ε is satisfied. Therefore, if h(p̂, p0) > 2ε, we must have p̂ 6= p∗.

This effectively means that there exists p ∈ P̃ such that h(p, p∗) ≥ (2 − 1)ε = ε and that
Ln(p) ≥ Ln(p∗). This means:

P(h(p̂, p0) ≥ 2ε) ≤P( sup
p∈P̃,h(p,p∗)≥ε

Ln(p)

Ln(p∗)
≥ 1)

=P( sup
p∈P̃,h(p,p∗)≥ε

Ln(p)

Ln(p0)

Ln(p0)

Ln(p∗)
≥ 1)

≤P( sup
p∈P̃,h(p,p∗)≥ε

Ln(p)

Ln(p0)
≥ exp(−nε

2

2
)) + P(

Ln(p0)

Ln(p∗)
≥ exp(

nε2

2
))

According to Wong-Shen lemma and union bound, the first term is upper-bounded by:

P( sup
p∈P̃,h(p,p∗)≥ε

Ln(p)

Ln(p0)
≥ exp(−nε

2

2
)) ≤N(ε) exp(−nε

2

4
)

≤ exp(
nε2

8
) exp(−nε

2

4
) = exp(−nε

2

8
)

Meanwhile, according to Markov inequality, the second term is upper-bounded by:

P(
Ln(p0)

Ln(p∗)
≥ exp(

nε2

2
)) ≤Ep0

n∏
i=1

p0(Xi)

p∗(Xi)
exp(−nε

2

2
)

= exp(−nε
2

2
)(

∫
p20
p∗

)n

= exp(−nε
2

2
)(1 + χ2(p0, p

∗))n

≤ exp(−nε
2

2
) exp(nχ2(p0, p

∗))

≤ exp(−(
1

2
− U)ε2) ≤ exp(−nε

2

8
)

In conclusion, we have:

P(h(p̂, p0) ≥ 2ε) ≤ 2 exp(−1

8
nε2)

Q.E.D.
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19.2 Sieve Estimation in the TV/`1 metric

In this section, we discuss a similar problem using a method devised by Yannis Yatracos.

19.2.1 Problem and method

Again, we have n samplesX1, X2, ..., Xn ∼ p0 ∈ P . Now, we want a non-parametric estimator
p̂ such that the total variance between p̂ and p0 , TV (p̂, p0), is small. In order to do this, we
use the following method:

(1) Construct an ε- TV cover of P : P̃ = {p1, p2, ..., pN(ε)}, such that ∀p ∈ P , there exists a

p∗ ∈ P̃ such that TV (p, p∗) ≤ ε.

(2) Construct a family of Yatracos sets Aij for 1 ≤ i < j ≤ n, with Aij = {x : pi(x) >
pj(x)}. Denote the family of all Yatracos sets as A. Apparently, |A| < N2(ε), and we have

TV (pi, pj) = |pi(Aij)− pj(Aij)|.

(3) Pick p̂ = argminp∈P̃ ∆n(p), in which

∆n(p) = sup
A∈A
|p(A)− pn(A)|

with pn(A) = 1
n

∑n
i=1 1(Xi ∈ A).

In the following parts, we will show that this is a good way to guarantee that TV (p̂, p0) is
small.

19.2.2 A heuristic condition

In this part, we consider a heuristic condition in which p0 is included in P̃ . In this case, we
have:

∆n(p0) = sup
A∈A
|p0(A)− 1

n

n∑
i=1

1(Xi ∈ A)| ≤ C

√
log(N2(ε)/δ)

2n

with probability of at least 1− δ, according to Hoeffding’s inequality and union bound.

On the other hand, consider every p ∈ P̃ , p 6= p0, such that TV (p, p0) ≥ ε. Further define
A∗ = {x : p(x) > p0(x)}, then we get:
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∆n(p) = sup
A∈A
|p(A)− pn(A)|

≥|p(A∗)− pn(A∗)|
≥|p(A∗)− p0(A∗)| − |p0(A∗)− pn(A∗)|

≥ε−
√

logN(ε)

n

with high probability, using Hoeffding’s bound. Notice that |p(A∗)− p0(A∗)| = TV (p, p0) ≥
ε. Therefore, as long as ε −

√
logN(ε)

n
�

√
logN(ε)

n
, which is implied by nε2 � logN(ε),

∆n(p) > ∆n(p0), which means p cannot be p̂. In conclusion, as long as we can find ε such
that nε2 � logN(ε), we have TV (p̂, p0) ≤ ε with high probability.

19.2.3 General case

The previous part considers a rare condition in which the real distribution p0 is accidentally
in P̃ . If this is not the case, we can still guarantee that TV (p̂, p0) ≤ 2ε with high probability.

According to the definition of P̃ , we can find a p∗ ∈ P̃ such that TV (p0, p
∗) ≤ ε. Now we go

on to argue that for any p ∈ P̃ such that TV (p, p0) ≥ 2ε, p cannot be p̂ as ∆n(p) > ∆n(p∗).
This is because:

(1) ∆n(p∗) = supA∈A |pn(A)−p∗(A)| ≤ TV (p0, p
∗)+supA∈A |pn(A)−p0(A)| ≤ ε+C

√
2 logN(ε)

n

with high probability, according to Hoeffding’s bound and union bound.

(2) Due to the same reason as that in the previous part, ∆n(p) ≥ 2ε−C
√

logN(ε)
n

with high

probability.

So in conclusion, no matter whether p0 ∈ P̃ , as long as nε2 � logN(ε), we have TV (p̂, p0) ≤
2ε with high probability.

19.3 Robust density estimation

In the problem of robust density estimation, the true distribution is not in the family of
candidates. Formally, we have X1, X2, ..., Xn ∼ p0 /∈ P , but we still want to find an estimator
p̂ ∈ P̃ , such that

TV (p̂, p0) ≤ C min
p∈P̃

TV (p0, p) +

√
logN(ε)

n



Lecture 19: April 2 19-5

For example, in Huber’s model, we have p0 = (1 − ε)P + εQ, where ε is a small positive
number, P ∈ P , Q /∈ P is some arbitrary noise. If p̂ is constant, then we get TV (p̂, p0) ≤ ε.
We will discuss this in the following lecture.


