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2.1 Gaussian complexity

2.1.1 Motivating example

Let’s try to derive an estimator for a parameter θ∗ ∈ K ⊂ Rd. We have an observation of
this θ∗, y, that is generated through the following process:

ε ∼ N
(

0,
σ2Id
n

)
y = θ∗ + ε.

Note that semantically, we can view y as an already computed mean of several draws from
a standard normal centered at θ∗. One estimator for θ∗ we can consider is the MLE:

θ̂ = argmax
θ∈K

L(y | θ)

= argmax
θ∈K

√
1

(2π)d det(σ2Id/n)
exp

(
−1

2
‖y − θ‖22

)
= argmin

θ∈K
‖y − θ‖22.

We would like to consequently measure the distance between θ̂ and θ∗. Define the vector
between the two points as ∆ = θ̂ − θ∗.

One property that follows from the definition of θ̂, which we term the basic inequality, is:

‖y − θ̂‖22 ≤ ‖y − θ∗‖22

We use this basic inequality to get an upper bound on ‖∆‖22:

‖θ∗ + ε− θ̂‖22 ≤ ‖ε‖22
‖∆ + ε‖22 ≤ ‖ε‖22

‖∆‖22 + 2 〈∆, ε〉+ ‖ε‖22 ≤ ‖ε‖22
‖∆‖22 ≤ −2 〈∆, ε〉
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We could try to bound −2 〈∆, ε〉 in a couple of ways:

• Cauchy-Schwarz:

‖∆‖22 ≤ 2‖ε‖2‖∆‖2
‖∆‖ ≤ 2‖ε‖

E[‖∆‖] ≤ 2σ

√
d

n

This is a result of the following inequality

E[‖ε‖] ≤
√
E [‖ε‖22] =

√√√√ d∑
i=1

E[ε2i ] =

√
σ2d

n
.

• Other Hölder inequalities: an example of another bound that could be useful is if we
knew a fact like K = { θ| ‖θ‖1 ≤ t }. Then we could get the following bound:

‖∆‖22 ≤ 2‖ε‖∞‖∆‖1
≤ 2t‖ε‖∞

We could then use some kind of Gaussian tail bound on ‖ε‖∞. In particular, we can
use the fact that

E‖ε‖∞ ≤ σ

√
2 log(d)

n
.

2.1.2 Formulation

In the previous bounds, we either used no knowledge of K (in the Cauchy-Schwarz case) or
imposed too much structure on K (having it being a specific kind of set in the Hölder case).
We use K in a more general way in the following upper bound:

−2 〈ε,∆〉 ≤ 2 sup
θ̃∈K−θ∗

〈
−ε, θ̃

〉
Definition 2.1 We define the Gaussian complexity of a set K as

G(K) = E
[
sup
θ∈K
〈ε, θ〉

]
where ε ∼ N (0, Id).
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We can view this as a measurement of the size of K in sense, and is similar to Rademacher
complexity (where ε would be a vector of independent Rademacher variables) as a tool for
characterizing the deviation of an empirical estimate from the true parameter.

Example 2.2 (Finite set) When there are a finite set of vectors, K = {θ1, . . . , θN} we can
expect:

G(K) = E
[
max
θ∈K
〈ε, θ〉

]
�
√

log(N)

Example 2.3 (L1 and L2 balls) Let K = { θ| ‖θ‖2 ≤ 1 } be a the unit sphere in L2 dis-
tance. The Gaussian complexity is then:

G(K) = E
[

max
‖θ‖2≤1

〈ε, θ〉
]

= E [‖ε‖2] ≤
√
d.

We can view the L2 unit sphere case as when the Cauchy-Schwarz bound becomes equality.
On the other hand, for a L1 unit ball we have the following Gaussian complexity (which we
will prove in a later lecture):

G(K) ≈
√

log(d)

Note that Gaussian complexity is a lossy bound on −2 〈ε,∆〉, since it considers the worst
case (furthest) distance between elements of K. In future lectures, we will also consider a

notion of localized Gaussian complexity that will utilize an additional inductive bias θ̂ is
close to θ∗.

2.2 Covering and Packing Numbers

Gaussian complexity maybe difficult to directly compute, so we consider a different notion
of the size of a set that we can use to then bound Gaussian complexity.

Let T, ρ be a metric space i.e. ρ be a metric on T.

Definition 2.4 ρ : T × T → R is a metric on T iff if it satisfies the following properties
on arbitrary θi, θj, θk ∈ T:

1. ρ(θi, θj) ≥ 0

2. ρ(θi, θj) = 0 iff i = j
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3. ρ(θi, θj) = ρ(θi, θj)

4. ρ(θi, θk) ≤ ρ(θi, θj) + ρ(θj, θk)

Example 2.5 (Metric spaces)

• T = Rd, ρ(θi, θj) = ‖θi − θj‖p for some p ≥ 0.

• T = F [0, 1] where ‖f‖∞ = sup
x∈[0,1]

f(x) ≤ 1, ρ(fi, fj) = sup
x∈[0,1]

‖fi(x) − fj(x)‖p for some

p ≥ 0.

Definition 2.6 A covering of set T under metric ρ with balls of radius δ > 0 is a set
{θ1 . . . , θN} such that for all θ ∈ T, there exists i ∈ [N ] such that ρ(θi, θ) ≤ δ.

Definition 2.7 The covering number of set T with respect to metric ρ for balls of radius
δ > 0 is denoted as N(δ;T, ρ) and defined as the cardinality of a minimum cover of T with
radius δ and metric ρ. Metric entropy is simply defined as logN(δ;T, ρ).

Definition 2.8 A metric space T, ρ is considered totally bounded iff for all δ > 0, N(δ;T, ρ)
is finite.

Definition 2.9 A packing of set T under metric ρ with balls of radius δ > 0 is a set
{θ1 . . . , θM} ⊆ T such that for all i, j ∈ [M ] and i 6= j, ρ(θi, θj) > δ.

Definition 2.10 The packing number of set T with respect to metric ρ for balls of radius
δ > 0 is denoted as M(δ;T, ρ) and defined as the cardinality of a maximum packing of T
with radius δ and metric ρ.

Proposition 2.11 (Relationship between packing and covering)

M(2δ;T, ρ) ≤ N(δ;T, ρ) ≤M(δ;T, ρ).

Proof: For the upper bound, consider a maximum δ-packing. That means for all θ in T,
there exists some θi in the packing such that ρ(θ, θi) ≤ ε, else we would be able to add θ to
our packing, and violate the definition of maximum. Consequently, this maximum packing
is also covering. Thus, the cardinality of the minimum covering can only be smaller, and
consequently the upper bound is shown.
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For the lower bound, we assume for sake of contradiction that M(2δ;T, ρ) ≥ N(δ;T, ρ) +
1. Consider an arbitrary maximum 2δ-packing and minimum δ-covering. By pigenohole
principle, there is an element of the minimum covering, θk, that is the closest element
in the covering to at least two elements of the packing, θi, θj. By definition of covering,
ρ(θi, θk) ≤ δ, ρ(θj, θk) ≤ δ. By triangle inequality, this means that ρ(θi, θj) ≤ 2δ which
contradicts the definition of 2δ-packing.

Here, packing numbers are useful because they provides us with both a lower and upper
bound on the covering number.

Example 2.12 (Unit intervals) Let T = [−1, 1], ρ(θi, θj) = |θi − θj| be a metric space.
We can compute a δ-cover simply by taking numbers every 2δ, starting at −1 i.e. {−1,−1 +
2δ, . . . ,−1+2δN} where N is the smallest integer such that 1 ≤ −1+2δN+δ. This gives us
an upper bound of d1/δe on N(δ;T, ρ). The cover we have constructed is also a 2δ-packing.
By proposition 2.11, this packing is also a lower bound on N(δ;T, ρ) which gives a equality
of N(δ;T, ρ) = d1/δe.

We can generalize this to d dimensions i.e. T = [−1, 1]d, ρ(θi, θj) = ‖θi − θj‖∞ and
N(δ;T, ρ) = (1/δ)d

Example 2.13 (Lipschitz functions on the unit interval) Let

T = FL[0, 1] = { f | f : [0, 1]→ R, f(0) = 0, |f(x)− f(y)| ≤ L |x− y| }
ρ(f i, f j) = ‖f i − f j‖∞

Define:

β ∈ {−1,+1}M

xi = (i− 1)h

φ(z) = 1{z ≥ 0}

where h is a bandwidth we choose. To achieve a lower bound, we construct a packing with
the family of functions:

fβ(x) =
M∑
i=1

βiLhφ

(
y − xi
h

)

For each pair of functions fβi , fβj , there exists index k such that βik 6= βjk which means that
‖fβi − fβj‖∞ ≥ 2Lh. If 2Lh = 2δ, this is a valid 2δ-packing. Consequently, h = δ/L which
means there are at least 2L/δ elements of the packing. This gives an asymptotic lower bound
of logN(δ;T, ρ) % L/δ.



2-6 Lecture 2: January 16

We can also prove upper bound by showing this packing is also a cover - a proof sketch of this
is to divide the up the graph into grid squares of δ×δ size, and show that for the grid squares
f ∈ FL[0, 1] passes through, there exists a fβ that passes through the same grid squares that
is no more than δ away from f .

If we consider f over [0, 1]d instead, an analogical argument shows that logN(δ;T, ρ) �
(L/δ)d which is exponential when compared to the metric entropy of unit intervals.

Metric entropy can be used in a heuristic calculation for rates of convergence for estimators
in some set, as demonstrated in the Le Cam equation.

Definition 2.14 The Le Cam equation is defined as:

nε2 � logN(ε;T, ρ)

where ε is the “error” of an “estimator”, n is the number of samples used to construct the
estimator, and T, ρ form a metric space. The equation is a heuristic for computing the
convergence rate of some estimator for a parameter in T.

Example 2.15 (Using Le Cam equation) For a parametric estimator, we get a covering
number of d log (1/ε), which when plugged into the Le Cam equation, nε2 � d log (1/ε), gets
us an asymptotic error of ε �

√
(d/n) log(1/ε).

For a nonparametric estimator, we have a covering number of (1/ε)d/α where α is based on
constraints of how smooth the distribution is. Consequently, this gets us ε � n−α/(2α+d) which
is typically n−1/3 or slower, making it slower than parametric rates of convergence.


