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In the previous lectures we studied about the Sieve estimators in the Hellinger metric as
well as the TV/`1 metric (where we introduced the Yatracos Estimator). In both the cases
we considered the case where X1, X2, . . . , Xn ∼ p0 ∈ P and we wished to find p̂ such that
either h(p̂, p0) ≤ 2ε or TV(p̂, p0) ≤ 2ε. In general when it comes to density estimation type
problems, a way to go would be to put down a net and find a member of the net using an
appropriate rule (KL or Hellinger perhaps go with likelihood, TVgo with Yatracos sets.)

In today’s lecture we will first talk about robust estimation, where we consider cases when
X1, X2 . . . Xn ∼ p0 /∈ P . We will then move our discussion forward to non paramteric least
squares.

20.1 Robust Estimation

We assume that perhaps the data comes from a different that doesn’t belong to the class P ,
i.e., X1, X2, . . . , Xn ∼ p0 /∈ P .

There are two ways to think about this setup,

• Model Misspecification: Where we assume that even though p0 /∈ P it is still close in
some metric like TV/H2.

• Corrupted Data: Some ε fraction of X1, . . . , Xn is replaced by some arbitrary value.
An example for this is the Huber’s contamination model where we assume that X ∼
(1− ε)P + εQ where ε is a small positive and P ∈ P and Q is some arbitrary noise such
that Q /∈ P . This mixture model has the property that TV((1− ε)P + εQ, P ) ≤ ε.

This is a special case of Model Misspecification.

The broad goal of robust estimation is to find estimators whose performance degrades “grace-
fully” with ε (i.e., estimators with high breakdown point). To elaborate, given that p0 /∈ P
we wish to estimator p̂ ∈ P such that for metric ρ,

ρ(p̂, p0) ≤ c inf
p∈P

ρ(p, p0) +m

Where m is some form of complexity measure of the class P which is usually governed by
some sort of Le Cam’s equation.
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Suppose we consider the Yatracos estimator we discussed in the last lecture. Formally, we
find η > 0 such that,

nη2 � logN(η),

where N(η) is the TV covering number of P . Now, we construct an η covering of P which we
denote by {p1, . . . , pN}. We now construct the collection of Yatracos setsA = {Aij : pi > pj},
and select:

p̂ = arg inf
p∈{p1,...,pN}

sup
A∈A
|pn(A)− p(A)|.

Our analysis from last lecture with minor modifications then shows that with probability at
least 1− δ,

TV(p0, p̂) ≤ C1 inf
p∈P

TV(p, p0) + C2

√
log(N/δ)

n
.

You will explore this more carefully in your HW. It is worth noting that likelihood based
procedures typically are poorly behaved when model is misspecified. This is intuitively due
to the fact that the likelihood (which is a product of probabilities), and likelihood ratios,
are not very robust. For instance, the likelihood of a dataset with a single corruption can
be drastically different from the likelihood of its uncorrupted counterpart.

20.2 Non Parametric Least Squares

Setup: We have (x1, y1), . . . (xn, yn) ∼ PXY and

yi = f ∗(xi) + σwi, wi ∼ N (0, 1) (20.1)

And we wish to estimate f ∗.

There can be different measures of the quality of the estimate f of the regression function,

• L2(P) metric: EX [(f(x)− f ∗(X))2] also written as ‖f ∗− f‖L2(P) This metric is usually
used in the random design setup when we know that the xi’s are sampled from some
distribution.

• L2(Pn) metric: We use this metric when we have fixed number of samples x1, . . . xn,
also known as fixed design setup where we assume that the samples are fixed and the
only randomness is being added by the wi’s . We define an empirical distribution Pn
and the associated L2(Pn) norm is given by

‖f − f ∗‖L2(Pn) = [
1

n

n∑
i=1

(f̂(xi)− f ∗(xi))2]1/2
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In this class we will mainly focus on the errors in L2(Pn). Note that we will use the shorthand

‖f̂ − f ∗‖n for L2(Pn) norm.

The estimator that we will be analysing for non paramteric least squares is defined as,

f̂ = argmin
f∈F

{
1

2

n∑
i=1

(yi − f(xi))
2

}
(20.2)

We will talk about the cases with regularization and situations when f ∗ /∈ F in the subse-
quent lectures. Possible examples for the collection of functions F can be Lipschitz functions,
or all convex functions on the domain [0, 1]. Hence, note that the error between the esti-

mated function f̂ and f ∗ should depend upon the size of the collection of functions F and
now the size affects the rate of convergence.

The complexity term that we will be working with is called local Gaussian width and is
defined as,

Gn(δ) = Ew
[

sup
f∈F̃
‖f‖n≤δ

∣∣∣∣ 1n
n∑
i=1

wif(xi)

∣∣∣∣]. (20.3)

Where F̃ = F − f ∗ = {f : f = g − f ∗, g ∈ F}. Constrasting it to global Gaussian width
with is defined as,

Gn(δ) = Ew
[

sup
f∈F

∣∣∣∣ 1n
n∑
i=1

wif(xi)

∣∣∣∣]. (20.4)

That is we are looking at the Gaussian width around the functions f ∈ F̃ that have small
L2(Pn) norm. (A way to think of it would be that we are likely to be confused by functions
that are around f ∗ and we would like to know many functions are there in this small set
around f ∗.)

Now we will introduce Critical Radius, which will play a central role in our analysis. The
critical radius is defined as the set of positive scalars δ that satisfy the critical inequality,

Gn(δ)

δ
≤ δ

2σ
. (20.5)

In the equation above the RHS is an increasing function in δ and we will verify later that
the LHS will be decreasing in δ under the assumption that F̃ is a star-shaped function.

Star Shaped function classes : A function class F̃ is star-shaped around f ∗ if for any α ∈ [0, 1],

the function αf ∗ ∈ F̃ . In other words, all the functions that lie on the line connecting f and
f ∗ should also lie in F̃ . A stronger assumption is that the class of functions is convex, as
convexity will imply that the function class is star shaped (around every possible function

f ∗ ∈ F̃ .

Hence, if we can find a δ that the critical inequality is satified then we can find the rate of
convergence of the least squares error in terms of this δ.
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Theorem 20.1 suppose that our function class F̃ is star-shaped, and let δn be any any
solution to the critical inequality defined in equation 20.5. Then for any t ≥ δn, the non-
parametric least-sqaures estimate f̂ satisfies the bound,

Pr(‖f̂ − f‖2
n ≥ 16tδn) ≤ exp{−ntδn

2σ2
}. (20.6)

In this lecture we will just go through how the proof goes about heuristically,

Proof Sketch: We first start with the basic inequality,

1

n

n∑
i=1

(f̂(xi)− yi)2 ≤ 1

n

n∑
i=1

(f(xi)− yi)2. (20.7)

Given that yi = f (xi)+σwi, let ∆̂ = f̂−f ∗ and after rearranging some terms in equation 20.7,
we get,

1

2
‖f̂ − f ∗‖2

n ≤
σ

n

n∑
i=1

wi∆̂(xi). (20.8)

Given that ∆̂ ∈ F̃ we can upper bound the term in the RHS by taking a supremum over
all functions g ∈ F̃ with ‖g‖n ≤ ‖∆̂‖n, and therefore after taking expectation over both the
sides in equation 20.8, we have,

E‖∆̂‖2
n

2
≤ E

[
sup

‖g‖n≤‖∆̂‖n
g∈F̃

∣∣∣∣σn
n∑
i=1

wigi

∣∣∣∣]. (20.9)

Now, reasoning heuristically, if we assume that E‖∆̂‖2
n = δ2

n and in the RHS of equation 20.9,

instead of ‖g‖n ≤ ‖∆̂‖n where ‖∆̂‖n is a quantity we don’t know, we replace it by δn, we
get,

δ2
n

2
≤ E

[
sup
‖g‖n≤δn
g∈F̃

∣∣∣∣σn
n∑
i=1

wigi

∣∣∣∣]

=⇒ δ2
n

2
≤ σ E

[
sup
‖g‖n≤δn
g∈F̃

∣∣∣∣ 1n
n∑
i=1

wigi

∣∣∣∣]
︸ ︷︷ ︸

the local Gaussian width

.

Hence from our current heuristic argument we get

δ2
n

2
. σGn(δn). (20.10)



Lecture 20: April 7 20-5

Therefore if we can find a δ that satisfies the critical inequality in equation 20.5, it will
potentially be an upper bound on the δn that satisfies equation 20.10, i.e., if Gn

δ
≤ δ

2σ
and

δ2n
2
. σGn(δn) implies that δn ≤ δ.

Assuming that δ∗ is the smallest solution to equation 20.5, then we have something like
δn ≤ δ∗, and given that we assumed that δ2

n := E‖∆̂‖2
n it implies that E‖∆̂‖2

n ≤ δ∗.


