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21.1 Recap

1. Yatracos’ method and robust estimation:
Even when model is misspecified, if ne? > log N(e),

]P’(TV(]?, Po) >3 hel?f; TV (p,po) + e) < Cexp {—cne’}
P

2. Non-parametric least squares:
We have {(z1,y1), ..., (Tn,Yn)} ~ Pxy and

yi = [*(z;) + owi, w; ~N(0,1).

We want
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f =argmin — z:(yZ — f(z:))*

feEF n &
3. Main claim:
Local Gaussian width here is defined as:

Gn(o) =E sup
geF
lglln<é

If §,, satisfies critical inequality:

>|Q

4}
< Y]
— 20
then Vt > 9,,, we have the following bounds:

P(||f — fII? < 16t5) < exp{
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21.2 Bounds via metric entropy

For any function class F, we define B, (6; F) = {h € star(F) | ||h]l. < ¢}, and we let
N, (t;B,,(5; F)) denote the t-covering number of B,,(; F) in the norm || - ||,,.

Theorem 21.1 Under the condition of Theorem 20.1, any 6 € (0, 0] such that

10 /5 Vlog N, (t;B,,(8; F)dt < o
\/ﬁ 272 g n ) n ) — 4

g

satisfies the critical inequality, and hence can be used in the conclusion of Theorem 20.1.

21.2.1 Examples:
1. Non-parametric Least Squares over class of L-Lipschitz functions:

Fo=A{f:101] > R| f(0) = 0,]f(z) = f(y)| < Llz — y[}

The global metric entropy of this class that we computed before, scales as N(F,u) =< % We
need to find ¢ such that:

— Zdu < — (21.1)

Such a ¢ will satisfy the critical inequality, solve it out and we have:

%\/f x V6 < % (21.2)
oV'L

= P 2= (21.3)

vn

2/3
5§<0\/Z> . (21.4)
n
So
N 2 2/3
E!\f—f*|!i§52§<g> . (21.5)
n

Note that here we bounded by the global metric entropy instead of local metric entropy, and
it turns out for most non-parametric classes, they are the same up to a constant. So it won’t
matter much when we use global metric entropy here, but it matters in the following case.
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2. Parametric problems: linear regression settings

F={fo=<0,x>0cR'
||X§— X0°|2 < o’rank(X)

n ~v n
Based on previous heuristics,

ne* < log N(e)

1
ne? < dlog(-)
€

Find 4 such that:

c [ ) 52
— — <
\/ﬁ/gz \/log {<1+u> du_ 4o

and rearrange the terms, we have:

T

The integral part turns out to be some constant, and

520\/g
n

~ od
EIX0 - X0*[) 3 —
n
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21.3 A more rigorous proof of Theorem 20.1

Proof: We start with the basic inequality first:

q

— Z Az (21.10)

3

And we define the following event:

> 2gllau}, F=F—f*. (21.11)

%ZMQ(%)

=1

A(u) = {39 € F.||glln = u,

The main idea is that A(u) is very unlikely, i.e., for all the functions outside a radius from f*,
the Gaussian width will be somehow upperbounded. Roughly, you can rescale any function
outside the radius back to the ring according to star-shaped property.

We want to show if u > 9,,:

nu?

P(A()) < exp{ g )

Pick u = \/t0,,,t > 4, then on A(u)*:

g
No f ti n> tény - 7 i > 2 u
{No function, |lg[l» > |nzi:wg(fv)_ g1}

there are two cases:
(1) [|A]ln < Vt0,: in this case we are fine.

(2) [|A|l, > Vtd,: then
< 2/Al x \/tdn

%ZwiA(:ci)

Use basic inequality:

< 2||A|| x \/t6, (21.12)

A2 < 160, (21.13)

Yl

So far, we haven’t reached anything substantial, since we assumed A(u)¢. In the next class
we will prove that A(u) is a low-probability event. u



