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21.1 Recap

1. Yatracos’ method and robust estimation:
Even when model is misspecified, if nε2 � logN(ε),

P
(

TV(p̂, p0) ≥ 3 inf
p∈P

TV(p, p0) + ε

)
≤ C exp {−cnε2}

2. Non-parametric least squares:
We have {(x1, y1), ..., (xn, yn)} ∼ PXY and

yi = f ?(xi) + σwi, wi ∼ N (0, 1).

We want

f̂ = arg min
f∈F

1

n

∑
i

(yi − f(xi))
2.

3. Main claim:
Local Gaussian width here is defined as:

Gn(σ) = E sup
g∈F̃
‖g‖n≤δ

∣∣∣∣ 1n∑
i

wig(xi)

∣∣∣∣.
If δn satisfies critical inequality:

G
δ
≤ δ

2σ
,

then ∀t ≥ δn, we have the following bounds:

P(‖f̂ − f‖2n ≤ 16tδ) ≤ exp {−ntδ
2σ2
}.
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21.2 Bounds via metric entropy

For any function class F , we define Bn(δ;F) = {h ∈ star(F) | ‖h‖n ≤ δ}, and we let
Nn(t;Bn(δ;F)) denote the t-covering number of Bn(δ;F) in the norm ‖ · ‖n.

Theorem 21.1 Under the condition of Theorem 20.1, any δ ∈ (0, σ] such that

16√
n

∫ δ

δ2

4σ

√
logNn(t;Bn(δ;F)dt ≤ δ2

4σ

satisfies the critical inequality, and hence can be used in the conclusion of Theorem 20.1.

21.2.1 Examples:

1. Non-parametric Least Squares over class of L-Lipschitz functions:

FL = {f : [0, 1]→ R
∣∣ f(0) = 0, |f(x)− f(y)| ≤ L|x− y|}

The global metric entropy of this class that we computed before, scales as N(F , u) � L
u

. We
need to find δ such that:

C√
n

∫ δ

0

√
L

u
du ≤ δ2

4σ
(21.1)

Such a δ will satisfy the critical inequality, solve it out and we have:

C√
n

√
L×
√
δ ≤ δ2

4σ
(21.2)

⇒ δ3/2 %
σ
√
L√
n

(21.3)

δ %

(
σ

√
L

n

)2/3

. (21.4)

So

E‖f̂ − f ?‖2n - δ2 -

(
σ2L

n

)2/3

. (21.5)

Note that here we bounded by the global metric entropy instead of local metric entropy, and
it turns out for most non-parametric classes, they are the same up to a constant. So it won’t
matter much when we use global metric entropy here, but it matters in the following case.
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2. Parametric problems: linear regression settings

F = {fθ =< θ, x >, θ ∈ Rd}

‖Xθ̂ −Xθ?‖2n -
σ2rank(X)

n

Based on previous heuristics,

nε2 � logN(ε)

nε2 � d log(
1

ε
)

Find δ such that:

C√
n

∫ δ

δ2

√
log

[(
1 +

δ

u

)d]
du ≤ δ2

4σ
(21.6)

Let v = u
δ

and rearrange the terms, we have:

δ

√
d

n

∫ 1

0

√
log
(

1 +
1

v

)
dv -

δ2

4σ
. (21.7)

The integral part turns out to be some constant, and

δ ≥ σ

√
d

n
(21.8)

E‖Xθ̂ −Xθ?‖2n -
σ2d

n
(21.9)
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21.3 A more rigorous proof of Theorem 20.1

Proof: We start with the basic inequality first:

‖∆̂‖2n
2
≤ σ

n

n∑
i=1

wi∆̂(xi) (21.10)

And we define the following event:

A(u) = {∃g ∈ F̃ , ‖g‖n ≥ u,

∣∣∣∣σn
n∑
i=1

wig(xi)

∣∣∣∣ ≥ 2‖g‖nu}, F̃ = F − f ?. (21.11)

The main idea is that A(u) is very unlikely, i.e., for all the functions outside a radius from f ?,
the Gaussian width will be somehow upperbounded. Roughly, you can rescale any function
outside the radius back to the ring according to star-shaped property.

We want to show if u ≥ δn:

P(A(u)) ≤ exp {−nu
2

2σ2
}.

Pick u =
√
tδn, t ≥ δn, then on A(u)c:

{No function, ‖g‖n ≥
√
tδn, |

σ

n

∑
i

wig(xi) ≥ 2‖g‖u},

there are two cases:
(1) ‖∆‖n ≤

√
tδn: in this case we are fine.

(2) ‖∆‖n ≥
√
tδn: then ∣∣∣∣σn∑

i

wi∆(xi)

∣∣∣∣ ≤ 2‖∆‖ ×
√
tδn

Use basic inequality:

‖∆‖2n
2
≤
∣∣∣∣σn∑

i

wi∆(xi)

∣∣∣∣ ≤ 2‖∆‖ ×
√
tδn (21.12)

‖∆‖2n ≤ 16tδn (21.13)

So far, we haven’t reached anything substantial, since we assumed A(u)c. In the next class
we will prove that A(u) is a low-probability event.


