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In this lecture we will discuss the adaptivity of the non-parametric least squares estimator
in the absence of special knowledge about the structure of the function. We will also study
an oracle inequality when the true function does not belong to the class of functions used
for least squares estimation.

22.1 Adaptivity of the Least Squares Estimator

Consider estimating a smooth monotone function f ∗ for which we observe noisy samples at
fixed points on a grid as shown in Figure 22.1
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Figure 22.1: We observe noisy samples (represented by dots) of the original mono-
tone/piecewise constant function (represented by the dotted lines)

To analyse non-parametric least squares we note that its metric entropy is

logN (u) ≤ cV

u
(22.1)

where V = fmax − fmin.

Due to this the rate at which we can estimate a monotone function as in Figure 22.1a is

‖f̂ − f ∗‖2n ≤
(
σ2V

N

)2/3

(22.2)
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which is the same as that for Lipschitz functions.

If f ∗ is monotone and has k constant pieces as in Figure 22.1b then

‖f̂ − f ∗‖2n .
k log n

n
(22.3)

In this case least squares adapts to give the faster rate even if we don’t know k because
the local Gaussian Width is much smaller for such functions than for monotone functions
[1]. This is remarkable because we did not tailor the estimator to any assumptions about
structure. The original estimator adapts on its own.

This property that the local Gaussian width can be a highly variable function of the un-
known parameter θ∗ also underlies the adaptivity properties of the soft and hard thresholding
estimators we have studied previously.

22.2 Oracle Inequality

Theorem 22.1 Let δn be any positive constant solution to the inequality

Gn(δ; ∂F)

δ
≤ δ

2σ
(22.4)

Then there are universal positive constants (C, c0, c1, c2) such that for any t ≥ δn the non-

parametric least squares estimate f̂ satisfies the bound

P
(
‖f̂ − f ∗‖2n ≥ C inf

f∈F
‖f − f ∗‖2n + ctδn

)
≤ c1 exp

(
−c2

ntδn
2σ2

)
(22.5)

Thus the least squares estimator automatically achieves a bias-variance tradeoff.

Proof(Sketch): Recall the basic inequality

1

2n

n∑
i=1

(yi − f̂(Xi))
2 ≤ 1

2n

n∑
i=1

(yi − f̃(Xi))
2 ∀f̃ ∈ F (22.6)

Since yi = f ∗(Xi) +σwi where wi’s are standard normal random variables and σ is the noise
standard deviation, we get the following modified basic inequality

1

2
‖∆̂‖2n ≤

1

2
‖f̃ − f ∗‖2n +

∣∣∣∣∣σn
n∑
i=1

wi(f̃ − f̂)

∣∣∣∣∣ (22.7)

where ∆̂ = f̂ − f ∗. The rest of the proof involves considering the cases ‖∆̂‖n ≤
√
tδn and

‖∆̂‖n ≥
√
tδn separately. In the first case the probabilistic upper bound is zero while in the

second case the bound is obtained by applying the standard Gaussian tail bound.



Lecture 22: April 14 22-3

Note that all our analysis has been for the fixed design case due to which we only care about
empirical norms. The results may not be the same for random design where we care about
population norm.

Some examples of applications of the oracle inequality are

1. We can use it to bound the prediction error in paramteric regression as

‖Xθ̂ −Xθ∗‖22
n

. inf
‖θ‖0≤s

‖Xθ −Xθ∗‖22
n

+
s log p

n
(22.8)

where θ∗ is arbitrary.

2. We can use it to improve the estimation of Sobolev functions with 2α < d. The naive
estimate is given by

f̂ = arg min
f∈Fα

1

2n

n∑
i=1

(yi − f(Xi))
2 (22.9)

where Fα is the function class. Functions in this class can be highly irregular (in
particular, they can be discontinuous). This estimate will be an interpolation i.e. it

will satisfy f̂(Xi) = yi and will not be consistent i.e. even if f ∗ ∈ Fα the least squares
estimate will do poorly. Therefore we can instead construct a simpler class of functions
F̃α where the least squares estimate is sensible and then use the oracle inequality to
characterise how far f̂ is from f ∗ through the bias term (we can also try to balance
the bias-variance tradeoff). This idea is closely related to the idea of using sieves that

we discussed previously. In particular, one can view the space F̃α as a sieve of the
space Fα – so sieves, in addition to simplifying the analysis of our estimators can also
provide explicit bias-variance control that the direct least squares estimator might not
have.

References

[1] Adityanand Guntuboyina, Bodhisattva Sen, et al. Nonparametric shape-restricted re-
gression. Statistical Science, 33(4):568–594, 2018.


