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Intuitively, we might expect that if a set is sufficiently nice its metric entropy might be
related to its volume, relative to the volume of the balls we are using to cover the set. We
will first formalize this in the case when the set is a unit norm ball in some norm.

3.1 Metric entropy and Gaussian width continued

Consider some unit ball, B measured with some norm, ‖ · ‖, i.e.

B = {x : ‖x‖ ≤ 1}.

We’ll cover this with δ-balls, δB′ in some other norm, ‖ · ‖′.

Proposition 3.1
vol(B)
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Proof:(lower bound)
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Proof:(upper bound)

Take a maximal packing {θ1, . . . , θM} of B.

Now,
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And so we have

N(δ;B, ‖ · ‖′) ≤M(δ;B, ‖ · ‖′) ≤
vol

(
B + δ

2
B′

)
(
δ
2

)d
vol(B′)

as required.

3.1.1 Functions

Now, let’s switch gears to discuss function spaces.

Say that we’re interested in functions of the form

f =
∞∑
j=1

θjϕj : [0, 1]→ R

such that
∑∞

j=1 θ
2
j < ∞ and the ϕj form an orthonormal basis for the inner product space,

(F , 〈·, ·〉) where for any ψi, ψj ∈ F ,

〈ψi, ψj〉 =

∫ 1

0

ψi(x)ψj(x)dx

In other words, for any ϕj, ϕk in our basis,

∫ 1

0

ϕj(x)ϕk(x)dx = I(j = k)

We’d like to impose some kind of structure on these functions. One natural way to do so is
to assume that “most” of the mass of the sequence is in the early coefficients. Concretely,
we may assume that,

∞∑
j=1

θ2j
µj
≤ 1,

for some sequence of coeffcients µ1 ≥ µ2 ≥ . . . ≥ 0.
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In particular, consider Sobolev ellipsoids, functions for which we have µj = j−2α for some
α > 1/2. When α = 1, these functions should be thought of as a generalization of Lipschitz
functions.

Example 3.2

y = θ∗ + ε

where θ∗ is an infinite-dimensional vector.

If we just use y as an estimator for θ∗, we’ll get bad rates. Instead, let’s use this Sobolev
structure.

If we use t ∈ N as a truncation point beyond which we simply don’t estimate θt+1, θt+2, . . . ,
then our bias and variance will (heuristically) look like

Bias2 :
∞∑

j=t+1

θ2j , Var:
t

n
.

We can now bound this bias using our Sobolev ellipsoid assumption, i.e.

∞∑
j=t+1

θ2j =
∞∑

j=t+1

µjθ
2
j

µj
≤ µt+1

∞∑
j=t+1

θ2j
µj
≤ µt+1 ≤ t−2α.

Choosing t � n1/(1+2α), we see that the MSE should scale as n−2α/(2α+1) – which is indeed
the rate at which we can estimate Sobolev functions in 1D.

Let us return to the task of bounding the metric entropy of the Sobolev ellipsoid. Consider
the space of coefficients:

E =

{
(θ1, θ2, . . .) :

∞∑
j=1

θ2j
µj
≤ 1

}

and

Ẽ = {θ ∈ E : θj = 0 for all j > t}

We claim that if we choose t to be the smallest integer such that µt ≤ δ2, then a δ-cover of
Ẽ is a

√
2δ-cover of E .

Proof: Let {θ1, . . . , θN} be a cover for Ẽ . For any θ ∈ E ,
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‖θ − θi‖22 =
t∑

j=1

(θj − θij)2 +
∞∑
j=1

θ2j

≤ δ2 + µt

∞∑
j=t+1

θ2j
µj

≤ 2δ2.

Therefore, we need only consider the covering of Ẽ . In class we did a quick argument that
leads to a bound that is sub-optimal by a log-factor. We note that Ẽ is contained within the
t-dimensional unit ball, so

N(Ẽ ; δ, ‖ · ‖2) ≤ N(B; δ, ‖ · ‖2) ≤
(

1 +
2

δ

)t
,

so selecting

t := d(1/δ)1/αe,

we have that the metric entropy is upper bounded as:

logN(Ẽ ; δ, ‖ · ‖2) .
(

1

δ

)1/α

log(1/δ).

Here is a sharper argument from the Wainwright book. As a subset of Rt, Ẽ contains the `2
ball, B2(δ) and thus

vol(Ẽ +B2(δ/2)) ≤ vol(2Ẽ).

And thus by proposition 3.1,

N ≤ vol(Ẽ +B2(δ/2))(
δ
2

)t
vol(B2(1))

≤

(
4

δ

)t
vol(Ẽ)

vol(B2(1))

By volume of ellipsoids,

vol(Ẽ)

vol(B2(1))
=

t∏
j=1

√
µj
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Therefore, substituting µj = j−2α, we get

logN ≤ t log

(
4

δ

)
+

1

2

t∑
j=1

log µj = t log

(
4

δ

)
− α

t∑
j=1

log j

Using the inequality,
∑t

j=1 log j ≥ t log t− t, and selecting,

t := d(1/δ)1/αe,

we have

logN ≤

{(
1

δ

) 1
α

+ 1

}
(log 4 + α)

And so,

logN .

(
1

δ

) 1
α

.

3.1.2 Gaussian and Rademacher complexity

Definition 3.3 (Gaussian complexity of a set) The Gaussian complexity of a set K is
defined as

G(K) = E sup
θ∈K
〈θ, w〉 w ∼ N(0, Id)

Definition 3.4 (Rademacher complexity of a set) The Rademacher complexity of a set
K is defined as

R(K) = E sup
θ∈K
〈θ, ε〉 ∀j, εj ∼ Unif{−1, 1}.

Example 3.5 (Gaussian complexity of a Euclidean ball Bd
2)
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G(B2(1)) = E sup
‖θ‖2≤1

〈θ, w〉

= E‖w‖2

≤
√

E‖w‖22 by Jensen’s inequality

≤
√
d.

Example 3.6 (Gaussian complexity of Bd
1)

G(B1(1)) = E sup
‖θ‖1≤1

〈θ, w〉

= E‖w‖∞
= E max

j=1,...,d
|wj|

�
√

2 log d.

Key takeaway: an `2 ball has much larger Gaussian complexity than an `1 ball.

Example 3.7 (Gaussian complexity of truncated Bd
0) Let

Sd(s) =

{
θ ∈ K :

d∑
j=1

I(θj 6= 0) ≤ s

}⋂
B2(1)

G

(
Sd(s)

)
= E sup

‖θ‖0≤s,‖θ‖2≤1
〈θ, w〉

= Emax
|S|≤s
‖ws‖2

.

√√√√s log

(
ed

s

)
.


