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Sub-Gaussian Processes

The Gaussian processes that we have described previously are particular examples of sub-
Gaussian processes.

Definition 4.1 A random variable X with mean µ = E[X] is sub-Gaussian if there is a
positive number σ such that

E[eλ(X−µ)] ≤ eσ
2λ2/2 ∀λ ∈ R.

Definition 4.2 A collection of zero-mean random variables {Xθ, θ ∈ T} is a sub-Gaussian
process with respect to a metric ρ on T if

E[eλ(Xθ−X
′
θ)] ≤ eλ

2ρ2(θ,θ′)/2 ∀θ, θ′ ∈ T, λ ∈ R.

In the case of Rademacher and Gaussian complexities, the metric is a norm ρ(θ, θ′) =
Θ(‖θ − θ′‖).

Let Xθ = 〈θ, ε〉 where θ ∈ T and ε ∼ N(0, Id). Then Xθ−Xθ′ = 〈θ− θ′, ε〉 ∼ N(0, ‖θ− θ′‖22).
From the zero-mean assumption, we have that

E[sup
θ∈T

Xθ] = E[sup
θ∈T

(Xθ −Xθ0)]

≤ E[ sup
θ,θ′∈T

(Xθ −Xθ′)].

If we upper bound the last term, we can then upper bound the first term E[supθ∈TXθ], which
is the Gaussian complexity.

When {Xθ, θ ∈ T} is a sub-Gaussian process, we can then use the 1-step discretization
method to upper bound E[supθ∈T(Xθ − Xθ0)]. The discretization method uses the metric
entropy of the set and is much easier to use than direct methods to bound the Gaussian
complexity, while achieving the same rate of decay.
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1-Step Discretization Method

The general outline of forming the naive discretization bound is as follows. We construct a
δ-covering of the set T, which allows us to replace the supremum over T by a finite maximum
over the δ-cover. We must also then add an approximation error that scales with δ, which
forms the upper bound.

The bound obtained is

E[ sup
θ,θ′∈T

(Xθ −Xθ′)] ≤ 2E sup
θ,θ∈T,‖θ−θ‖≤δ

(Xθ −Xθ′) + 2
√
D2 logN(δ;T, ρ),

where D is the diameter, given by D = supθ,θ′∈T ρ(θ, θ′).

Gaussian Complexity of the Unit Ball

Recall from previous lectures that the metric entropy of a unit ball is

d log(
1

δ
) ≤ logN(δ;B, ‖ · ‖) ≤ d log(1 +

2

δ
).

We can use the discretization bound and what we know about the covering number already
to bound the Gaussian complexity of the L2 unit ball. Let B2(1) = {θ : ‖θ‖2 ≤ 1}. Then

G(B2(1)) = E[ sup
θ∈B2(1)

Xθ]

≤ E[ sup
θ,θ′∈B2(1)

(Xθ −Xθ′)]

≤ 2E sup
θ,θ∈B2(1),‖θ−θ]‖2≤δ

〈θ − θ′, ε〉+ 4

√
4d log(1 +

2

δ
)

Using Cauchy-Schwarz, E supθ,θ∈B2(1),‖θ−θ]‖2≤δ〈θ − θ
′, ε〉 ≤ δE‖w‖2 ≤ δ

√
d. Plugging this in,

≤ 2
√
dδ + 8

√
d log(1 +

2

δ
)

If we choose δ = 1
2

=
√
d(

1

2
+ 2

√
2 log 5)

. C
√
d

In the previous lecture we used direct methods to prove that G(B2(1)) =
√
d(1 − o(1)).

Using the discretization bound achieves the same
√
d scaling, but with worse control of the

constant prefactor.
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Expected Operator Norm of a Random Matrix

Let W ∈ Rn×d be a random 1-sub-Gaussian matrix with i.i.d entries Wij ∼ N(0, 1). The
expected operator norm of this matrix is then

E‖W‖op = E sup
u,v,‖u‖‖v‖=1

uTWv = E sup
‖u‖2=1

‖Wu‖2

Note that

E sup
u
‖Wu‖2 = E sup

u,v
uTWv = E sup

u,v
〈W,uTv〉 = E sup

u,v
tr(W T (uvT ))

Then let {M : M = uvT , ‖u‖2 = ‖v‖2 = 1} which is the same as {M : rank(M) = 1, ‖M‖F =
1}. We can rewrite E‖W‖op as

E‖W‖op = E sup
M∈M

〈W,M〉 ≤ E sup
M,M ′∈M

〈W,M −M ′〉.

Let us denote by ‖M‖∗ the nuclear norm of M (i.e. the sum of its singular values).

Note that 〈W,M −M ′〉 ∼ N(0, ‖M −M ′‖2F ) and ρ(M,M ′) = ‖M −M ′‖F . Using the 1-step
discretization bound,

E sup
M,M ′∈M

〈W,M −M ′〉 ≤ 2E sup
M,M ′∈M,‖M−M ′‖F≤δ

〈W,M −M ′〉+ C
√

logN(δ;M‖ · ‖F )

≤ 2E‖W‖op‖M −M ′‖∗ + C
√

logN(δ;M‖ · ‖F )

≤ 2E‖W‖op
√
rank(M −M ′)‖M −M ′‖F + C

√
logN(δ;M‖ · ‖F )

≤ 2
√

2E‖W‖opδ + C
√

logN(δ;M‖ · ‖F )

≤ 2
√

2E‖W‖opδ + C

√
(n+ d) log(1 +

2

δ
).

If we set δ to get a tight bound and absorb constants, for a constant c > 0 we get

1√
n
E‖W‖op ≤ c(1 +

√
d

n
).

Lipschitz Functions

The class of Lipschitz function is given by

FL = {g : [0, 1]→ R|g(0) = 0, |g(x)− g(x′)| ≤ L|x− x′|∀x, x′ ∈ [0, 1]}
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Suppose we have a dataset of (X1, Y1), ..., (Xn, Yn) where Xi ∼ U [0, 1] and Yi = f(Xi) + εi
with εi ∼ N(0, 1). We construct an estimate f̂ = argminf∈F

1
n

∑n
i=1(Yi − f(Xi))

2. In this
nonparametric setting we will instead consider FL(Xn

1 ), and the metric is ‖ · ‖n the empir-
ical L2 distance ‖f − f ′‖n = 1√

n

√∑n
i=1(f(xi)− f ′(xi))2. We want to bound the Gaussian

complexity of FL(Xn
1 ).

Since ‖f − f ′‖n ≤ ‖f − f ′‖∞, logN(δ;FL(Xn
1 ), ‖ · ‖n) ≤ logN(δ;FL, ‖ · ‖∞). We can then

upper bound using the discretization bound with the L∞ metric,

G(
FL(Xn

1 )

n
) ≤ 1√

n
[naive δ bound + C

√
D2 logN(δ;FL, ‖ · ‖∞)].

Recall for suitably small δ > 0 we know that the metric entropy bound on this class of
functions is logN∞(δ;FL) � L

δ
,∀δ < δ0. We can then plug this into the second term.

Further, since the functions in FL are uniformly bounded by 1, and the Cauchy-Schwarz
inequality gives a naive δ bound of ≤ δ

√
n,

G(
FL(Xn

1 )

n
) ≤ 1√

n
(δ
√
n+ C

√
L

δ
).

Choosing δ = n−1/3 to obtain the tightest upper bound,

G(
FL(Xn

1 )

n
) . n−1/3

which is much slower than the parametric case. We will see in the next lecture that we can
however sharpen this bound using a sharper bound on the metric entropy obtained using
Dudley’s chaining.


