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5.1 Recap
1. Sub-gaussian process:
2200 g
E[e!Xo=X] < exp <t p° (0,6 ))
- 2

For the canonical Gaussian process we discussed so far p(z,y) = ||z — yl|2-

2. One-step discretization bound:
Efsup Xg] < Esup(Xp — Xo) < cE,p01<5(Xo — Xor) + /D2 1og N(5, T, p)
0 0

where D = supg g1 p(0,0')
3. Application: E||W |y < C(y/n + d), where W € R™? with W}, is a zero mean, one

subgaussian RV.

5.2 Apply Naive Discretization Bound to Regression

Recall the setup, we observe (x;,y;)",, where z; ~ Px|0, 1],
yi = f(x:) + e, e ~N(0,1).
The goal is to estimate f*. We restrict F = {f : f(0) = 0,supp(f) = [0, 1], L-Lipschitz}.
A naive estimator is f: arg min ;. » % > i(yi — f(z;))? Using the basic inequality, we have:
1 - 2 2 ]?— I
il N (e ))2 <
s ) = £ < = e )

Note that:
= € ) N0 S ) - )
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which gives a natural metric

1
Pl fo) = D (filzi) = fol@))* 2 A = folln < 11 = folloo:
Since the natural metric is data-dependent, which is not-ideal, it suffices to cover the space
with || - || for upper bounds. The naive discretization bound then gives:

L (E sup (e, h=f
Vi fa—flle<s VN
< (E|re||2||fjﬁf2uz VI x L/cs)

<p~1/3 by picking §* = L?/3.

)+ /L2 log (5, F, || Hoo)>

5.3 Dudley’s Bound

This section gives a tighter upper bound than the naive discretization bound.

Definition 5.1 Dudley’s entropy integral

&7(5):/5 Viog N (u, T, p)du

Lemma 5.2

Esup Xy <c¢ (]E sup (Xp— Xp) + j(é))
0 p(6,6')<6

Under mild regularity conditions we can take 6 — 0 and obtain

Esup Xy < ¢J(0).
9

Remark 5.3 J(9) < \/N(0)(D —§) since N is non-decreasing.

Example 5.4 We use Dudley’s bound for non-parametric regression with Lipschitz func-
tions:

Note this gives a better bound than the naive discretization.
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Example 5.5 Let A be a collection of sets with VC-dimension d < co. We want to bound
Esup 4¢ 4 ’% Zi Loea — P(A)’-
Write F = {f = 14, A € A}, we have:

E sup
AcA

1
- Z I,ea — P(A)

7

= sup
feF

<ER(F,zY)
dlogn

3 S —BS

(2

n

where R is the Rademacher complexity, 7 = {x1,...,x,}. Here the last step follows from
Massart’s lemma.

If instead we use Dudley’s bound, and use Hassler’s bound that
N(@GF, || -]) < Cd x 24 x (1/8)4,
we have

ER(F,z7})

C
gg/ Vlog(ed x 24 x log (1/6))ds
n Jo

< / /log(dlog(1/8))ds

o1
n

which gets rid of the logd factor of Massart’s lemma.

As an application of this we can now recover something closer to the DKW inequality for
CDF functions. The DKW inequality states that:

P(sup |F(z) — F(X)| > t) < 2,

Since this corresponds to uniform convergence over the class of left intervals (i.e. intervals
of the form (—oo,t], t € R) which has VC dimension 1, the above result together with the
Azuma-Hoeffding bound for concentration yield,

P(sup |F(z) — F(X)| > t) < Ce ™",

for some constants ¢, C' > 0.
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5.3.1 Useful Inequalities

Theorem 5.6 Sudakov-Fernique Inequality

Given two sequences of random variables {X1,...} and {Y1,...} and F : R" — R. Suppose
that E(X; — X;)* < E(Y; — Y;)? for all (i,j) € N?, then

Esup X; < EsupY;.

Lemma 5.7 Gaussian Contraction Inequality:

Let e ~ N(0,1), 0 € ©F, 1 = {11, ..., 104} where each 1; : © — R and ||1|| < 1, then:

Esgp(e, 0) > ES%P(@ ¥(0)),
where Y(0) = {¢1(61), ..., va(0a)}

Proof: Since 1 is a contraction, we have E(0; — 6,)* > E(¢(0;) — 1(6;))* for all i,j € N.
This allows us to use Sudakov-Fernique. [ ]

Example 5.8 Let F*(z1,...,7,) = {f*(x1), ..., [2(x,), f € F}. Wewant G(F?) < 20G(F)
if [[flloc < 0.

Let (t) = t2/(2b), then if we can show that v is contraction we obtain by the Gaussian
contraction inequality that

G(F?) = Esgp(g,ﬂ} = 25E31;P<67¢(f)> < 2bE sgp(e, f) =20G(F).

We are left to show that 1 is a contraction:

2 2 B
i) — vl < 11— ) < LA 2 2 1)

| < [f1 = fol-

5.3.2 Tightness of Dudley’s Bound

Theorem 5.9 Sudakov Minoration

Let {Xy} be a Gaussian process, p(01,09) = +/E(Xos, — Xo,)? (usually called the “intrinsic
metric” of Xp), then

E sup Xy > sup (g\/logM(é,T,p)>
0

6>0
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Proof: Let {#,...,0™} be a packing wrt p. Since it’s a packing we have E(X, — Xy)? > 2.
Now let Ypi, ..., Yy ~ N(0,62/2) be i.i.d, hence E(Yy — Yy )? < E(Xy — Xp)?. Now we can
apply Sudakov-Fernique:
Esup Xy > E max Xg > E max Yy = cd+/log M(4, T, p)
9 1€

M] i€[M]



