
36-709: Advanced Statistical Theory I Spring 2020

Lecture 8: February 13
Lecturer: Siva Balakrishnan Scribe: Zeyu Tang

In this lecture, we consider estimation of covariance matrices.

Recall that in the previous lecture, we deal with Wigner type of matrices (whose entries are
i.i.d. and with zero mean. Here for covariance matrices (as an example of Wishart type of
matrices), their entries are correlated, which makes the estimation potentially harder. In
this lecture, we will first consider estimating covariance matrix of Gaussian data; then see
what would happen if we drop the Gaussianity, namely, estimating covariance matrix in the
sub-Gaussian scenario.

8.1 Covariance matrix estimation: Gaussian data

In this section, we consider the estimation of covariance matrix for Gaussian case. The fact
that the data is Gaussian enables us use a trick to reason it just as we did for Wigner type
of matrices. (Notice that this trick only works for Gaussian case.)

8.1.1 Problem setup

Consider x1, x2, . . . , xn ∼ N (0,Σ) where each of them xi ∈ Rd. A natural estimator for the
covariance matrix Σ is the sample covariance (the i-th row of X ∈ Rn×d as xi):

Σ̂ =
1

n

n∑
i=1

xix
T
i =

XTX

n
(8.1)

From Eq. 8.1, the squared largest singular value of X√
n

equals to the largest eigenvalue of Σ̂:

γ2
max(

X√
n

) = λmax(Σ̂) (8.2)

This is always true, but notice that we have not taken advantage of Gaussianity of data.
The fact that data is Gaussian allows us to further factor X as the product of a Wigner type
matrix W and the square root of Σ:

X = W
√

Σ (8.3)
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where X,W ∈ Rn×d.

Therefore, for Gaussian data, instead of reasoning about the max/min eigenvalue of the

covariance matrix Σ, we can reason about the max/min singular value of W
√

Σ√
n

.

8.1.2 Bounds for max/min singular values

We want to show that, for δ > 0, we have two facts:

P
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γmax(X)√

n
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∥∥∥√Σ
∥∥∥
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n
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2

2
) (8.4)
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n
≤ (1− δ)

∥∥∥√Σ
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tr(Σ)

n

)
≤ exp(−nδ

2

2
) (8.5)

We will prove the first claim today. The proof of second requires some additional tools which
we will see in the future lectures. But before we give out the proof, let’s take a look at what
the claim Eq. 8.4 is telling us.

Consider the case when Σ is identity matrix, x1, x2, . . . , xn ∼ N (0, Id). From the previous
two claims, for any δ > 0, with probability at least 1− 2 exp(−nδ2

2
), we have:

γmax(X)√
n

≤ 1 + δ +

√
d

n
(8.6)

γmin(X)√
n
≤ 1− δ −

√
d

n
(8.7)

Therefore, if denote ε = δ +
√

d
n
, recall Eq. 8.2 we have:

λmax(Σ̂) ≤ (1 + ε)2 (8.8)

λmin(Σ̂) ≥ (1− ε)2 (8.9)

which, if write in terms of operator norm, is a valid bound for the estimation of covariance
matrix: ∥∥∥Σ̂− I

∥∥∥
op
≤ ε2 + 2ε (8.10)
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When Σ is not an identity matrix, x1, x2, . . . , xn ∼ N (0,Σ), follow the same way of reasoning:∥∥∥∥XTX

n
− Σ

∥∥∥∥
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n
− I
∥∥∥∥

op

(8.11)

where W has covariance matrix Id, which is the case we have just considered.

Let’s go back to the proof of the upper bound (Eq. 8.4). There are two steps in the proof,
one being establish concentration, the other being bounding the expectation. We will ignore
for now the bound of expectation (which is a Gaussian width of some set), and see how to
establish concentration inequality.

Concentation We want γmax(X)√
n

to have some nice concentration property:

P

(
γmax(X)√

n
≥ E

[
γmax(X)√

n

]
+ t

)
≤ exp(− t2

2C
) (8.12)

The key insight here is that a Lipschitz function of Gaussian concentrates. Considering Eq.

8.3, let f(W ) = γmax(W
√

Σ)√
n

and we want to show f(·) is Lipschitz, i.e., we want to find an L
that satisfies:

|f(W1)− f(W2)| ≤ L ‖W1 −W2‖F (8.13)

By Weyl’s inequality, we can find L as:

|f(W1)− f(W2)| =

∣∣∣∣∣γmax(W1

√
Σ)√

n
− γmax(W2

√
Σ)√

n

∣∣∣∣∣ ≤
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√
Σ
∥∥∥

op√
n

≤
‖Σ‖op√

n
‖W1 −W2‖F

(8.14)

Therefore we have the concentration inquality:
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) (8.15)
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8.1.3 Take-away

There are several things worth noticing:

1. Since the data is Gaussian, by showing the function mapping is Lipschitz, we can get
concentration “for free”. However, this is not the case for non-Gaussian data.

2. What we actually showed is that:

P


∥∥∥Σ̂− Σ

∥∥∥
op

‖Σ‖op

≥ 2
(√d

n
+ δ
)

+
(√d

n
+ δ
)2

 ≤ 2 exp(−nδ
2

2
), ∀δ > 0 (8.16)

We can see that only when
√

d
n
→ 0 can we consistently estimate Σ.

8.2 Covariance matrix estimation: sub-Gaussian data

In this section, we consider the estimation of covariance matrix for sub-Gaussian case.

8.2.1 Problem setup & sketch of proof

Consider x1, x2, . . . , xn ∼ PX(Σ) where each of them xi ∈ Rd satisfing σ sub-Gaussianity:

E
[
exp(tuTxi)

]
≤ exp(

t2σ2

2
), ∀ ‖u‖2 = 1, u ∈ Rd (8.17)

We want to show that

P


∥∥∥Σ̂− Σ

∥∥∥
op

σ2
≥ C

(√d

n
+
d

n

)
+ δ

 ≤ 2 exp(−c nmin{δ2, δ}), ∀δ > 0 (8.18)

where C, c, and σ2 are constants to be determined.

Again, we can make use the result in Wigner case and go through a two-step process to
further correct the result:

1. Discretization: for fixed unit vector u, make use of the result in Wigner case (we need
to correct the result since the entries are not i.i.d.)

P

(∥∥∥Σ̂− Σ
∥∥∥

op
≥ t

)
≤ |5|dP

(
uT (Σ̂− Σ)u ≥ t

4

)
(8.19)
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2. Bound the moment generating function: we want to establish an upper bound for

E
[
exp{tuT (Σ̂− Σ)u}

]
(8.20)

Consider the uT Σ̂u term in the expression of the mgf function Eq. 8.20:

uT Σ̂u =
uTXTXu

n
, where Xu =


uTx1

uTx2
...

uTxn

 (8.21)

Therefore the expression of mgf function is (Zi = uTxi is σ sub-Gaussian):

E
[
exp{tuT (Σ̂− Σ)u}

]
= E

[
exp

{
t

n

( n∑
i=1

(uTxi)
2 − E

[
(uTx)2
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= E

[
exp

{
t

n

( n∑
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Z2
i − E

[
Z2
])}] (8.22)

In order to bound this mgf function, we need to make use of the (σ4, σ2) sub-Exponential
tail bound of Z2

i .

8.2.2 sub-Gaussian & sub-Exponential

We first give the definition of sub-Exponential variable as well as their tail bounds, and then
we look at the example of bounded variables.

We say a random variable Z is (σ2, b) sub-Exponential if

E[exp{tZ}] ≤ exp{t
2σ2

2
}, for |t| ≤ 1

b
(8.23)

which is saying that the variable has a sub-Gaussian type of bound for small t.

One useful fact would be: the square of σ sub-Gaussian variable is c·(σ4, σ2) sub-Exponential
variable (c is some constant).

One canonical example is bounded variable (recall Bernstein’s inequality). If Z has mean µ
and bounded support [0, b], with variance σ2, we have

P (|Z − µ| ≥ t) ≤ 2 exp
{
− t2

2(σ2 + bt)

}
(8.24)

Therefore

P (|Z − µ| ≥ t) ≤

{
2 exp

{
− t2

2σ2

}
for 0 ≤ t ≤ σ2

b

2 exp
{
− t

2b

}
for t ≥ σ2

b

(8.25)


