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9.1 Background

In this class, we will talk about matrix concentration inequalities. Our basic set up is, given
a collection of independent symmetric random matrices Q1, . . . , Qn ∈ Sd×d, with mean 0d×d,
we would like to bound the maximum eigenvalue of their average Q = 1

n

∑n
i=1Qi:

P(γmax(Q) ≥ t).

A standard way to approach this is through a Chernoff argument, for any s > 0:

P(γmax(Q) ≥ t)

= P(sγmax(Q) ≥ st)

= P(γmax(sQ) ≥ st)

= P[exp(γmax(sQ)) ≥ exp(st)]
(i)
= P[γmax(exp(sQ)) ≥ exp(st)]
(ii)

≤ exp(−st) · E[γmax(exp(sQ))]
(iii)

≤ exp(−st) · E[tr(exp(sQ))]
(iv)
= exp(−st) · tr(E[exp(sQ)]). (9.1)

In step (i) we use the fact that the matrix exponential preserves the relative ordering of the
symmetric matrix’s eigenvalues. Step (ii) is standard Markov inequality. Step (iii) uses the
fact that exp(sQ) is a positive definite matrix. Therefore its trace, which is a sum of its
eigenvalues, is greater than its maximum eigenvalue. Step (iv) trace is a linear operator so
it can commute with expectation.

Taking inf over all of s > 0 in the above argument would complete the Chernoff argument.
Now it remains for us to bound the term tr(E[exp(sQ)]). In the standard scalar case,
the exponential of the average could be written as the product of individual exponentials
exp( 1

n

∑n
i=1Xi) =

∏n
i=1 exp(Xi

n
). Then we can proceed through properties of individual

random variable’s moment generating function directly. However in matrix exponential, we
need AB = BA to have exp(A) exp(B) = exp(A + B). As a result, we cannot directly
do a factorization on arbitrary realization of Q1, . . . , Qn. We will see later in this lecture
how to handle this problem to eventually relate back to individual random matrix’s moment
generating function.

9-1



9-2 Lecture 9: February 18

9.2 Sub-Gaussian and sub-exponential matrices

Like the real-valued random variable case, we characterize a class of random matrix variables
through their moment generating function.

Definition 9.1 (Sub-Gaussian random matrices) A zero-mean symmetric random ma-
trix Q ∈ Sd×d is sub-Gaussian with matrix parameter V 2, V ∈ Sd×d+ , if

E[exp(tQ)] � exp

(
t2V 2

2

)
, for all t ∈ R .

Definition 9.2 (Sub-Exponential random matrices) A zero-mean symmetric random
matrix Q ∈ Sd×d is sub-exponential with parameters (V 2, b), V ∈ Sd×d+ , b ≥ 0 if

E[exp(tQ)] � exp

(
t2V 2

2

)
, for all |t| ≤ 1

b
.

Remark 9.3 Sub-Gaussian random matrix with parameter V 2 is sub-exponential with pa-
rameter (V 2, 0).

Example 9.4 For any fixed symmetric matrix A, define the random matrix variable Q = εA,
where ε ∈ {+1,−1} is the Rademacher random variable. Then Q is a sub-Gaussian random
matrix with V 2 = A2. To see this, for any t ∈ R,

E[exp(tQ)] =E[
∞∑
k=0

tkεkAk

k!
]

=E[
∞∑
k=0

t2kε2kA2k

(2k)!
] + E[

∞∑
k=0

t2k+1ε2k+1A2k+1

(2k + 1)!
]

=
∞∑
k=0

t2kA2k

(2k)!

�
∞∑
k=0

(t2)k(A2)k

2k · k!

=
∞∑
k=0

( tA
2

2
)k

k!

= exp

(
tA2

2

)
.

A similar argument can show that if we replace the ε Rademacher random variable with a
zero mean sub-Gaussian real-valued random variable g with parameter σ2, the random matrix
Q = gA is sub-Gaussian with V 2 = σ2A2.
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Remark 9.5 We know that bounded real-valued random variable is sub-Gaussian. So we
might naturally wonder whether a “bounded” random matrix is guaranteed to be sub-Gaussian:
if random matrix Q always satisfies Q2 � V 2, can we bound its moment generating function

E[exp(tQ)] � exp
(
λt2V 2

2

)
with some constant λ for any t? The answer to this question is

No. However, we (might) see in homework that even though we cannot directly bound this
type of random matrices’ moment generating function, through a symmetrization argument
we can still get concentration bound of their averages.

9.3 Matrix Concentration inequalities

With the appropriate definitions in place, we are ready to state the first matrix concentration
inequality.

Theorem 9.6 (Sub-Gaussian bound) Let {Qi}ni=1 be a sequence of zero-mean indepen-
dent symmetric random matrices Qi ∈ Sd×d that are sub-Gaussian with parameters {V 2

i }
n
i=1.

Denote their average by Q = 1
n

∑n
i=1Qi. Then for all t > 0, we have the bound

P(γmax(Q) ≥ t) ≤ d exp(−nt
2

2σ2
).

where σ2 = ‖ 1
n

∑n
i=1 V

2
i ‖op.

Before we prove this theorem, we make a few comments.

Remark 9.7 Comparing this result with the real-valued analog, we notice that there is an
extra d in the upper bound. This additional term d is in some sense unavoidable. Consider
the following example:

Let n = d, Qi = εidiag(ei), εi
iid∼N (0, 1), where diag(ei) denotes the diagonal matrix whose

only nonzero entry is at (i, i) with value 1. In this case γmax(Q) =
n

max
i=1

εi
n

. Notice that Qi is

a sub-Gaussian random matrix with parameter diag(ei). Thus σ2 = ‖ 1
n
In×n‖op = 1

n
. Then

the probability

P(γmax(Q) ≥ t) = P(
n

max
i=1

εi ≥ nt) = 1−
n∏
i=1

(1− P(εi ≥ nt)) ≈ d exp

(
−n

2t2

2

)
.

The last step can also also be seen roughly from a union bound over the independent Gaussian
random variables. This shows that the bound in the theorem is tight with the factor d. There
is another argument in Martin’s book that reasons about this by comparing the Big O order
of the random variable implied by the tail bound and the Big O order of the gaussian max
divided by n. See p.176 of High Dimensional Statistics: a non-assymptotic viewpont.
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To prove this result, we need two deep facts:

(1) (log is operator monotone) for positive definite matrices A and B,

A � B =⇒ log(A) � log(B).

(2) (Lieb’s theorem) For any symmetric matrix H ∈ Sd×d, the function f : Sd×d+ → R,
f(A) = tr(exp(H + log(A)) is concave.

Now we are ready to prove Theorem 9.6.

Proof: [Theorem 9.6]

Based on the Chernoff argument (9.1), we now proceed to bound tr(E[exp(sQ)]).

tr(E[exp(sQ)])

=EQ1,...Qn−1 [EQn [tr(exp(
s

n

n−1∑
i=1

Qi +
s

n
Qn))]]

=EQ1,...Qn−1 [EQn [tr(exp(
s

n

n−1∑
i=1

Qi + log exp(
s

n
Qn)))]]

The last step uses the fact that matrix log composed with matrix exponential is identity
over Sd×d. For fixed value of Q1, . . . , Qn−1, we see that by Lieb’s theorem the function

f(X) = tr(exp(
s

n

n−1∑
i=1

Qi + logX))

is concave. By Jensen’s inequality, we have E[f(X)] ≤ f(E[X]). In our case, the random
variable X is exp( s

n
Qn). As a result, we have

EQ1,...Qn−1 [EQn [tr(exp(
s

n

n−1∑
i=1

Qi + log exp(
s

n
Qn)))]]

≤EQ1,...Qn−1 [tr(exp(
s

n

n−1∑
i=1

Qi + log(EQn [exp(
s

n
Qn)])))].

Repeating this trick n− 1 times, we get that

tr(E[exp(sQ)]) ≤ tr(exp(
n∑
i=1

log(EQi
[exp(

s

n
Qi)]))).

Recall our comment in the first section about the inability to directly factorize the expo-
nential of matrix sum, we see now this problem is avoided here through the application of
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Lieb’s theorem. We now can deal with individual random matrix Qi’s moment generating
function.

By theorem assumption that Qi is V 2
i sub-Gaussian, we have

E[exp(
s

n
Qi)] � exp

(
s2V 2

i

2n2

)
.

By operator monotonicity of matrix log, we have log(E[exp( s
n
Qi)]) � s2V 2

i

2n2 . Summing these
matrix inequalities over i, we have

n∑
i=1

log(EQi
[exp(

s

n
Qi)] �

s2
∑n

i=1 V
2
i

2n2
.

A fact about the function X 7→ tr(exp(X)) is that for any pair of symmetric matrices Q � R,
we have tr(exp(Q)) ≤ tr(exp(R)). Applying this fact, we have

tr(exp(
n∑
i=1

log(EQi
[exp(

s

n
Qi)]))) ≤ tr(exp(

s2
∑n

i=1 V
2
i

2n2
)).

Because the trace of a d×d positive definite matrix is upper bouned by d times its maximum
eigenvalue (operator norm), we have

tr(exp(
s2
∑n

i=1 V
2
i

2n2
)) ≤d ·

∥∥∥∥exp

(
s2
∑n

i=1 V
2
i

2n2

)∥∥∥∥
op

≤d · exp

(∥∥∥∥s2∑n
i=1 V

2
i

2n2

∥∥∥∥
op

)

≤d · exp

(
s2

2n

∥∥∥∥∑n
i=1 V

2
i

n

∥∥∥∥
op

)

≤d · exp

(
s2σ2

2n

)
.

Thus we have shown that

tr(E[exp(sQ)]) ≤ d · exp

(
s2σ2

2n

)
.

Plugging this into (9.1), we get

P(γmax(Q) ≥ t) ≤ inf
s>0

d · exp

(
s2σ2

2n
− st

)
.

Let s = nt
σ2 , we have P(γmax(Q) ≥ t) ≤ d exp(−nt

2

2σ2 ). The proof is complete.
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Remark 9.8 With the same assumptions made in Theorem 9.6, we can also get an oper-
ator norm bound of the symmetric average matrix Q:

P(
∥∥Q∥∥

op
≥ t) ≤ 2d exp(

−nt2

2σ2
).

To see this, we notice that
∥∥Q∥∥

op
= max{γmax(Q),−γmin(Q)}. By union bound, we then

have

P(
∥∥Q∥∥

op
≥ t) ≤P(γmax(Q) ≥ t) + P(−γmin(Q) ≥ t)

=P(γmax(Q) ≥ t) + P(γmax(−Q) ≥ t).

When Qi is V 2
i sub-Gaussian, so is −Qi. Using Theorem 9.6 on the collection of random

matrices {−Qi}ni=1, we can bound the term P(γmax(−Q) ≥ t). Thus we have P(
∥∥Q∥∥

op
≥

t) ≤ 2d exp(−nt
2

2σ2 ).

Theorem 9.6 can be seen as the matrix analog for concentration of sub-Gaussian random
variables. There are also concentration inequalities for bounded random matrices (recall
from an earlier comment in this lecture that they are not sub-Gaussian random matrices).
For bouned random matrices, if we know their “variance”, we can also incorporate this
information into the bound:

Definition 9.9 (Variance of random matrix) For random matrix Q ∈ Sd×d, define its
variance as V[Q] = E[Q2]− (E[Q])2.

Remark 9.10 For any random matrix Q, V[Q] � 0d×d.

Now we state the Bernstein inequality for symmetric random matrices.

Theorem 9.11 (Bernstein bound for random matrices) Let {Qi}si=1 be a sequence of
independent zero-mean symmetric random matrices with bounded operator norm: for some
b > 0, ‖Qi‖op ≤ b for all i. Then for all t ≥ 0, we have

P(γmax(
1

n

n∑
i=1

Qi) ≥ t) ≤ d exp

(
− nt2

2(σ2 + bt)

)
,

where σ2 =
∥∥ 1
n

∑n
i=1V[Qi]

∥∥
op

.

So far we have proved concentration bounds for symmetric (which are necessarily square)
matrices. However, the bounds can be extended to non-symmetric and/or nonsquare random
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matrices by forming a self-adjoint dilation. Given a random matrix Qi ∈ Rd1×d2 , we form
the following matrix Q̃i ∈ S(d1+d2)×(d1+d2):

Q̃i =

[
0d1×d1 Qi

QT
i 0d2×d2

]
.

We can easily see that the new matrix Q̃i is symmetric. In addition, one can show that
‖Q̃i‖op = ‖Qi‖op. This technique can be used to prove a Bernstein bound (c.f. Theorem
9.11) for non-symmetric and/or non-square matrices. There, we define σ2 as

σ2 = max


∥∥∥∥∥ 1

n

n∑
i=1

QiQ
T
i

∥∥∥∥∥
op

,

∥∥∥∥∥ 1

n

n∑
i=1

QT
i Qi

∥∥∥∥∥
op

 .

9.4 Conclusion

In this class, we have defined sub-Gaussian and sub-exponential random matrices and in-
troduced concentration bounds for both cases (Theorem 9.6 sub-Gaussian, Theorem 9.11
sub-Exponential). A nice paper with comprehensive results and examples on this topic is
Joel Tropp’s paper “User-friendly tail bounds for sums of random matrices” [Tro11]. In
the paper Tropp proposed the application of Lieb’s Theorem to bound the mgf of the sum
in terms of individual mgfs, which provides a general framework for this type of matrix
concentration analysis.

[Tro11] Tropp, Joel A. ”User-friendly tail bounds for sums of random matrices.” Foun-
dations of computational mathematics 12.4 (2012): 389-434.


