
OT Lecture 1: Introduction to Optimal Transport

1 The Monge problem (1781)
Monge was interested in the following question – how can one transport a pile of sand to fill a
ditch while minimizing the cost of transporting the sand?

It’s easy to see that the pile and ditch have to have the same volume, and we can normalize
them to have volume 1. Slightly more abstractly one can formulate the question as that of
transporting a probability measure µ to another probability measure ν, while minimizing some
cost. We’ll need to be more precise about what exactly “transporting” means.

A transport map is a measurable map T : Rd → Rd such that the push-forward constraint
T#µ = ν, is satisfied. (1)

This constraint is shorthand for the constraints that,

µ
(
T −1(B)

)
= ν(B) for all Borel B.

Then, given a cost c(x, y), the Monge problem seeks

inf
T : T#µ=ν

∫
c(x, T (x)) dµ(x), (2)

for example c(x, y) = ∥x − y∥ or perhaps c(x, y) = ∥x − y∥p for p ≥ 1.

Non-existence/ill-posedness. In general a map cannot split mass, so a feasible T need not
exist (e.g. when µ is a point mass and ν is a sum of two separated point masses).

In general, even when a solution exists, trying to study Monge’s problem is quite challenging.
Even when the cost is “nice”, the constraints are highly non-linear/non-convex. One way to see
this is to observe that if µ, ν had nice densities (and we could assert that the map was smooth)
then the constraints encode the change-of-variables formula:

µ(x) = ν(T (x))det(∇T (x)).

2 Kantorovich relaxation (1941)
Define the set of couplings (or transport plans)

Γ(µ, ν) =
{

γ prob. on Rd × Rd : γ(A × Rd) = µ(A), γ(Rd × B) = ν(B)
}

. (3)

The Kantorovich problem is the infinite-dimensional linear program

inf
γ∈Γ(µ,ν)

∫
c(x, y) dγ(x, y). (4)

The feasible set Γ(µ, ν) is nonempty and convex; when a minimizer is induced by a map γ =
(id, T )#µ, it solves Monge as well.

3 Discrete case and the Birkhoff polytope
Suppose µ = 1

n

∑n
i=1 δxi and ν = 1

n

∑n
j=1 δyj . A coupling is a nonnegative matrix γ ∈ Rn×n

with
∑

j γij = 1
n and

∑
i γij = 1

n (doubly stochastic). Let Cij = c(xi, yj). Then Kantorovich
reduces to

min
γ∈Γ

⟨C, γ⟩ subject to γ doubly stochastic. (5)

By the Birkhoff–von Neumann theorem, the feasible polytope is the convex hull of permutation
matrices, hence a linear objective attains an optimum at a permutation: one solution is induced
by a map (Monge solution).
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4 Wasserstein distances
For p ≥ 1 and measures with finite p-th moments, define

W p
p (µ, ν) = inf

γ∈Γ(µ,ν)

∫
∥x − y∥p dγ(x, y), Wp(µ, ν) =

(
W p

p (µ, ν)
)1/p

. (6)

Remark 1 (TV distance as a special cost). With c(x, y) = 1{x ̸= y},

inf
γ∈Γ(µ,ν)

P(X ̸= Y ) = 1
2∥µ − ν∥TV, (7)

the optimal value equals the total variation distance and ignores the ground metric.

5 Metric properties
Proposition 1. For p ≥ 1, Wp defines a metric on Pp(Rd).

Sketch. Nonnegativity and symmetry are immediate. If µ = ν, T (x) = x yields Wp(µ, ν) = 0;
conversely Wp(µ, ν) = 0 implies µ = ν. For the triangle inequality, let γXY ∈ Γ(µ, ρ) and
γY Z ∈ Γ(ρ, ν) be optimal couplings for random variables (X, Y ) and (Y, Z). By the gluing
lemma there exists a joint law of (X, Y, Z) with these marginals. Then by Minkowski,

Wp(µ, ν) ≤
(
E∥X − Z∥p)1/p ≤

(
E∥X − Y ∥p)1/p +

(
E∥Y − Z∥p)1/p (8)

= Wp(µ, ρ) + Wp(ρ, ν).
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