
Statistical OT Lecture 4: Brenier’s Theorem

1 Cyclical Monotonicity
In the last class we talked about subgradients. One property that subgradients have is that they
define a monotone operator. Suppose we have T ⊆ Rd × Rd which we think of as a set-valued
operator (for each x it outputs a set T (x) ⊆ Rd).

This is a monotone operator – for any x, y, and u ∈ T (x), v ∈ T (y) we have that,

(u − v)T (x − y) ≥ 0.

The subdifferential of a convex function defines a monotone operator. Notice that for any x, y
and gx ∈ ∂f(x) and gy ∈ ∂f(y) we have that:

f(y) ≥ f(x) + gT
x (y − x)

f(x) ≥ f(y) + gT
y (x − y).

Summing these inequalities shows that the subdifferential is a monotone operator.
One can ask if this fact has a converse, i.e. if I give you a monotone operator T can you

construct a convex function whose subdifferential is equal to T? When you think about this
you will hit two quick barriers:

1. If I take the subdifferential of a convex function, view it as a set-valued map, and simply
drop some of the output values, this will still be a monotone operator. (We are simply
taking a subset of T and checking the monotonicity condition.) So maybe the best converse
we could hope for is that:

T ⊆ ∂φ,

for come convex φ.

2. Even this turns out to be false. Consider for instance the map T (x) = Ax where A =(
0 −1
1 0

)
. This is a monotone operator, but is not the gradient of a convex function.

It is a beautiful result of Rockafellar’s that a strengthening of being a monotone operator
does in fact permit a nice converse. This strengthening is called cyclical monotonicity. Con-
cretely, given an operator T ⊆ Rd × Rd, suppose for any k ≥ 2 we consider a set of points
(x1, y1), . . . , (xk, yk) ⊆ T . Throughout the rest of the lecture we’ll use (cyclical) notation where
xk+1 = x1.

Then T is cyclically monotone if:

k∑
i=1

yT
i (xi − xi+1) ≥ 0.

This condition generalizes the definition of a monotone operator (which is just this definition
with k = 2). It is simple to verify that for a convex function φ, its subdifferential ∂φ is always
cyclically monotone.

The deep result of Rockafellar is that given any T which is cyclically monotone, there exists
a proper, closed convex function φ such that:

T ⊆ ∂φ.
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Proof: The proof of this result is slick and explicit. Lets fix an (x0, y0) ∈ T . For any x ∈ Rd

define the (convex) function:

φ(x) = sup
k≥0

sup
(xi,yi)∈T,i∈{1,...,k}

{
(x1 − x0)T y0 + (x2 − x1)T y1 + . . . + (x − xk)T yk

}
.

Notice that this is the supremum of affine functions, and is closed and convex. By cyclical
monotonicity we see that φ(x0) ≤ 0. It is also easy to see that φ(x0) ≥ 0, by taking k = 1 and
choosing (x1, y1) = (x0, y0). So we see that this is a proper convex function.

Finally, take any (x, y) ∈ T , any z ∈ Rd and we see that:

φ(z) ≥ sup
k≥0

sup
(xi,yi)∈T,i∈{1,...,k}

{
(x1 − x0)T y0 + (x2 − x1)T y1 + . . . + (x − xk)T yk + (z − x)T y

}
= φ(x) + (z − x)T y,

which shows that y ∈ ∂φ(x).

2 Brenier’s Theorem
We now turn our attention to the proof of the following result:

Theorem 1. Let µ, ν be two distributions with finite second moments, and µ has a density. If
γ0 is an optimal coupling for the squared Euclidean cost, i.e.:∫

∥x − y∥2dγ0 = W 2
2 (µ, ν),

then there is a convex function φ0 : Rd → R such that γ0 is the joint distribution of (X, ∇φ0(X))
where X ∼ µ.

It turns out the theorem is also true without any moment assumptions (but one needs a bit
of care). One (direct) consequence of the theorem is that Monge’s problem (of finding an OT
map) has a solution in this setting, and this map is given by the gradient of a convex function.

Before we prove this result, let us notice that we’ve already done some of the work. Con-
cretely, given an OT coupling γ0, if we can show that supp(γ0) is a cyclically monotone set,
then we can apply Rockafellar’s theorem to conclude that there is a convex function φ0 such
that supp(γ0) ⊆ ∂φ0, i.e. γ0(Y ∈ ∂φ0) = 1. Then we can note that convex functions are (clas-
sically) differentiable Lebesgue almost everywhere in the interior of their domain (this is known
as Rademacher’s theorem), and that the boundary of their domain has 0 Lebesgue measure.
Then, since µ has a density, we can conclude that φ0 is differentiable µ almost everywhere and:

γ0(Y = ∇φ0(X)) = 1.

This is Brenier’s theorem. To actually complete the proof we need to only show one fact – that
the support of γ0 is cyclically monotone.

2.1 Discrete Case

Before we actually prove Brenier’s theorem, it is worth thinking about why cyclical monotonicity
arises in OT (with quadratic cost).

In the discrete case where µ = 1
n

∑n
i=1 δXi and ν = 1

n

∑n
i=1 δYi we have already remarked

that there is an OT map which is a matching of the points. Suppose we take an OT matching,
we can argue that its support is always cyclically monotone. Conversely, given any cyclically
monotone matching we can conclude that it must be an OT matching.
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Optimality =⇒ Cyclical Monotonicity: To simplify things let’s relabel so that the OT
coupling simply matches xi to yi. Suppose we are given k distinct points in the support of our
OT coupling (with indices j1, . . . , jk). We would like to show that,

k∑
i=1

yT
ji

(xji − xji+1) ≥ 0.

Define the permutation τ to be the one which leaves the remaining indices unchanged, and
shifts the indices in the k points by one, i.e. it matches xji+1 with yji . By optimality we have
that,

k∑
i=1

∥xji − yji∥2 ≤
k∑

i=1
∥xji+1 − yji∥2,

which is exactly the fact we wanted to prove.

Cyclical Monotonicity =⇒ Optimality: Now, suppose that the identity permutation
is cyclically monotone (after relabeling). Given any other permutation τ we can decompose τ
into cycles. Roughly, start from an index i, collect the indices (i, τ(i), τ(τ(i)), . . .). This forms
a cycle, then start from a new index and repeat this till you have exhausted all indices. This is
a disjoint collection of cycles. For each of these cycles I, cyclical monotonicity of the identity
permutation will show that, ∑

i∈I

∥xi − yi∥2 ≤
∑
i∈I

∥xi − yτ(i)∥2,

and putting these together we obtain that the identity permutation is optimal.

2.2 Proof of Brenier’s Theorem

Recall that all we need to show is that the support of γ0 is cyclically monotone. We note in
passing that the support of γ0 along the first marginal is the support of µ and along the second
marginal is the support of ν. Our proof will mimic the discrete proof, but we’ll need to be
careful to ensure that our modified coupling is still valid. Suppose the support of γ0 is not
cyclically monotone. Then for some k ≥ 2, we can find {(x1, y1), . . . , (xk, yk)} ∈ supp(γ0) such
that,

k∑
i=1

∥xi − yi∥2 >
k∑

i=1
∥xi+1 − yi∥2.

Now, there are neighborhoods Ui, Vi of xi, yi such that, γ0(Ui × Vi) > 0, and for which:

k∑
i=1

∥x̃i − ỹi∥2 >
k∑

i=1
∥x̃

′
i+1 − ỹ

′
i∥2,

for any xi, x
′
i ∈ Ui, yi, y

′
i ∈ Vi, for i ∈ {1, . . . , k}.

Now, we can intuitively imagine cutting out the pieces Ui ×Vi and moving them to Ui+1 ×Vi.
More formally, let γi denote the conditional distribution of γ0 restricted to Ui×Vi. Let γ1

i denote
its first marginal, and γ2

i denote the second marginal. Then, for some small enough (specified
later on), c > 0, we set:

γ = γ0 + c

k

k∑
i=1

[
γ1

i+1 × γ2
i − γi

]
.
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We need to verify this is a valid coupling, and then argue that it is better than γ0. For any set
A,

γ(A × Rd) = γ0(A × Rd) + c

k

k∑
i=1

[
γ1

i+1(B) − γ1
i (B)

]
= γ0(A × Rd) = µ(A).

A similar argument works for the second marginal. Now, we also need to ensure that γ(A) ≥ 0:

γ(A) ≥ γ0(A) − c

k

k∑
i=1

γi(A) = γ0(A) − c

k

k∑
i=1

γ0(A ∩ Ui × Vi)
γ0(Ui × Vi)

.

So it suffices to choose c < mini γ0(Ui × Vi) to ensure that γ(A) ≥ 0.
Finally, let us evaluate the cost of γ:

∫
∥x − y∥2dγ =

∫
∥x − y∥2dγ0 + c

k

k∑
i=1

[∫
Ui+1×Vi

∥x − y∥2dγ1
i+1 × γ2

i −
∫

Ui×Vi

∥x − y∥2dγi

]

<

∫
∥x − y∥2dγ0,

contradicting the optimality of γ0. So we conclude that the support of γ0 must be cyclically
monotone.
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