
Statistical OT Lecture 5: Duality

1 Some Motivating Questions
Brenier’s theorem tells us that under some conditions any optimal coupling γ0 is induced by
the gradient of a convex function, i.e. if X ∼ µ, µ, ν have finite second moments, then γ0 is the
distribution of a pair (X, ∇φ0(X)) for some convex function φ0.

Can we say more?

1. Is there a converse? If ∇φ pushes µ onto ν, and φ is convex, then is ∇φ an OT map? Is
it unique?

2. Is there a way to directly find a “suitable” φ0? Perhaps, by solving some nice optimization
problem?

3. Given a convex function φ, is there a way to certify if ∇φ is an OT map between µ and
ν?

Outside of the settings where Brenier’s theorem applies, we still might want tools to under-
stand the OT problem better. Duality is a powerful lens for understanding the OT program.
We have already remarked that Kantorovich’s formulation is an LP, and LPs always have an
associated dual LP, and a property known as “strong duality” often holds. When strong duality
holds it is often the case that one can gain a lot of insight into primal objects by studying the
dual.

2 Discrete Case
The discrete case is once again the most transparent setting to consider. Suppose that µ =
1
n

∑n
i=1 δXi and ν = 1

n

∑n
i=1 δYi . Recall, the Kantorovich program was to find an optimal

coupling γ0:

min
γ

n∑
i=1

n∑
j=1

cijγij ,

subject to γij ≥ 0,
n∑

j=1
γij = 1

n
, for i ∈ {1, . . . , n}

n∑
i=1

γij = 1
n

, for j ∈ {1, . . . , n}.

To derive the dual LP we form the Lagrangian, and then appeal to a minimax theorem to
allow us to interchange min and max. Concretely, we introduce Lagrange multipliers for each
of the constraints and introduce the Lagrangian:

L(γ, µ, α, β) :=
n∑

i=1

n∑
j=1

cijγij −
n∑

i=1

n∑
j=1

µijγij −
n∑

i=1
αi

n∑
j=1

[
γij − 1

n

]
−

n∑
j=1

βj

n∑
i=1

[
γij − 1

n

]
.

Now, we can see that we could equivalently obtain the primal problem by considering:

min
γ

max
µ≥0,α,β

L(γ, µ, α, β),

1



and swapping the min and max we obtain the dual problem:

max
µ≥0,α,β

min
γ

L(γ, µ, α, β).

The minimization over γ can be explicitly carried out to obtain the problem:

max
µ≥0,α,β

1
n

n∑
i=1

αi + 1
n

n∑
j=1

βj ,

subject to αi + βj + µij = cij ,

and eliminating the µ variables we obtain the dual program:

max
α,β

1
n

n∑
i=1

αi + 1
n

n∑
j=1

βj ,

subject to αi + βj ≤ cij ,

An immediate observation is that the dual program always lower bounds the primal program
in value, i.e.:

min
γ

max
µ≥0,α,β

L(γ, µ, α, β) ≥ max
µ≥0,α,β

min
γ

L(γ, µ, α, β).

This fact is known as “weak duality” and always holds. A deep (and possibly surprising) fact
is that these values are in fact equal in this setting (and also far more generally...) – this fact
is called “strong duality”. There are many ways to verify that strong duality holds in this case
(appeal to von Neumann’s minimax theorem, or check Slater’s conditions which would tell us
that for a finite-dimensional LP strong duality holds if either the primal or dual is feasible).

Interpretation: It was Kantorovich who first observed that the dual problem could be given
an (economic) interpretation. He gave a slightly different interpretation (look up shadow prices).
This version comes from Villani/Cafferelli – the dual problem is sometimes called the shippers
problem. Recall, that we wanted to transport mass from µ to ν, suppose that a shipper came to
us and promised us they would handle the shipping and only charge us loading and unloading
costs. To transport from location Xi the loading cost is αi, and to transport to location Yj the
cost is βj .

Now, for us to accept the shipper’s proposition, we just need to check that the price for
unloading and loading is less than the cost of transporting mass ourselves (this is encoded in
the constraints). So we always accept the shipper’s deal, and weak duality tells us that the cost
we would have incurred to transport mass ourselves is always larger than if we handed things
over to the shipper.

Strong duality is then the statement that a clever shipper can solve the dual program, and
set prices in such a way so as to force us to pay him as much as we would have if we transported
the mass ourselves.

3 Duality for the Squared Euclidean Cost
We can derive the Kantorovich dual in general following the same steps as above. Throughout
the remainder of the lecture we will focus again on the squared Euclidean cost. In the general
case, the Lagrange multipliers are functions (which live in dual space to the space of mea-
sures, i.e. they are bounded continuous functions). Let us denote by Cb the space of bounded
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continuous functions on Rd. Then we may verify the following:

sup
f,g∈Cb

[∫
fdµ +

∫
gdν −

∫
(f + g)dγ

]
=

{
0, if γ ∈ Γµ,ν

∞ otherwise.

Then we can re-write the primal problem as:

inf
γ∈M+

∫
∥x − y∥2dγ + sup

f,g∈Cb

[∫
fdµ +

∫
gdν −

∫
(f + g)dγ

]
,

where M+ denotes the set of positive Borel measures. As before, interchanging the inf and sup,
we obtain the lower bound:

sup
f,g∈Cb

[∫
fdµ +

∫
gdν +

[
inf

γ∈M+

∫ [
∥x − y∥2 − f(x) − g(y)

]
dγ

]]
.

Now, we can verify that:

inf
γ∈M+

∫ [
∥x − y∥2 − f(x) − g(y)

]
dγ =

{
0 if f(x) + g(y) ≤ ∥x − y∥2 for all x, y ∈ Rd

−∞ otherwise
.

(If the constraint is violated at any point (x, y), we can simply take γ = tδx,y and send t → ∞).
Consequently, we obtain the dual program:

sup
f,g∈Cb

[∫
fdµ +

∫
gdν

]
subject to f(x) + g(y) ≤ ∥x − y∥2,

which lower bounds the primal value (by weak duality).
Note that once we have arrived here, we can expand the collection of functions (to obtain

a better lower bound) by observing that for every function f ∈ L1(µ) and g ∈ L1(ν), which
satisfy the pointwise constraints, f(x) + g(y) ≤ ∥x − y∥2 (µ, ν a.e. respectively) we have that
for any coupling γ: ∫

fdµ +
∫

gdν =
∫

(f(x) + g(y))dγ ≤
∫

∥x − y∥2dγ.

Taking the sup over f ∈ L1(µ) and g ∈ L1(ν) on the left, and the inf over γ on the right we
obtain the dual program:

sup
f∈L1(µ),g∈L1(ν)

[∫
fdµ +

∫
gdν

]
subject to f(x) + g(y) ≤ ∥x − y∥2,

and a proof of weak duality. It is possible to prove that strong duality holds once again by
appealing to a more general minimax theorem, but we will use Brenier’s theorem to construct
an explicit certificate of strong duality.

4 The Fundamental Theorem
In this section, we will prove a converse result to Brenier’s theorem, which will have several
useful implications.

Theorem 1. Suppose that µ, ν are measures with two bounded moments such that, µ has a
density, and X ∼ µ. Then the following statements are equivalent:
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1. γ0 is an optimal coupling.

2. There is a proper, closed convex function φ0 such that γ0 has the same distribution as
(X, ∇φ0(X)).

3. Strong duality holds, i.e.∫
∥x − y∥2dγ0 = sup

f∈L1(µ),g∈L1(ν),
f(x)+g(y)≤∥x−y∥2

[∫
fdµ +

∫
gdν

]
,

and the optimal dual potentials are: f0(x) = ∥x∥2 − 2φ0(x) and g0(y) = ∥y∥2 − 2φ∗
0(y).

Proof. We have already shown that (1) =⇒ (2) (this is Brenier’s theorem). Now, let us show
that (2) =⇒ (3). We know that,

∥x − ∇φ0(x)∥2 = ∥x∥2 + ∥∇φ0(x)∥2 − 2xT ∇φ0(x).

By the equality case of Fenchel-Young we know that,

φ0(x) + φ∗
0(∇φ0(x)) = xT ∇φ0(x).

Substituting and integrating we obtain that,∫
∥x − y∥2dγ0 =

∫
∥x − ∇φ0(x)∥2dµ

=
∫

(∥x∥2 − 2φ0(x))dµ +
∫

(∥∇φ0(x)∥2 − 2φ∗
0(∇φ0(x)))dµ

=
∫

(∥x∥2 − 2φ0(x))dµ +
∫

(∥y∥2 − 2φ∗
0(y))dν,

where the final equality uses that ∇φ0 pushes µ onto ν. We can thus conclude that strong
duality holds, for our choice of f0 and g0 if we can verify that these are in fact integrable
functions which satisfy the constraints. Observe that,

f0(x) + g0(y) = ∥x∥2 + ∥y∥2 − 2(φ0(x) + φ∗
0(y))

≤ ∥x∥2 + ∥y∥2 − 2xT y = ∥x − y∥2

using the Fenchel-Young inequality. Now, to verify integrability we observe that any proper,
closed convex function has an affine minorant, i.e. there is some a ∈ Rd, and b ∈ R such that,

φ0(x) ≥ aT x + b.

(Take a subgradient at any point in the interior of the domain, and this will define an affine
minorant.) So we obtain that,

f0(x) ≤ ∥x∥2 − aT x − b,

and so
∫

max{f0, 0}dµ < ∞ (using the fact that µ has finite second moments.) The same
argument applies to g0. Also since,∫

f0dµ +
∫

g0dν =
∫

∥x − y∥2dγ0 ≥ 0,

so we have that
∫

f0dµ ≥ −
∫

g0dν ≥ −
∫

max{g0, 0}dν > −∞. Finally, we observe that,∫
|f |dµ = 2

∫
max{f0, 0}dµ −

∫
f0dµ < ∞,
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so we conclude that f0 ∈ L1(µ), and similar reasoning shows that g0 ∈ L1(ν).

Let us next show that (3) =⇒ (1). By strong duality we have that for any other coupling γ:∫
∥x − y∥2dγ0 =

∫
f0dµ +

∫
g0dν

=
∫

(f0 + g0)dγ

≤
∫

∥x − y∥2dγ,

which shows that γ0 is an OT coupling.
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