
Statistical OT Lecture 6: More Duality

1 Uniqueness
Using the fundamental theorem from last lecture, it is quite simple to argue that the OT
coupling must be (essentially) unique.

Theorem 1. Suppose that µ, ν are measures with two bounded moments such that, µ has
a density, and X ∼ µ. Then there exists a convex function φ0 such that (X,∇φ0(X)) is an
optimal coupling. Furthermore, ∇φ0 is unique, i.e. if (X,∇ψ(X)) is a valid coupling with ψ
convex, then ∇φ0 = ∇ψ, µ almost surely.

Proof. By Brenier’s theorem we already know that there exists a convex function φ0 such that
(X,∇φ0) is an optimal coupling. By the fundamental theorem, we know that (X,∇ψ(X)) is
also an OT coupling. Now let T1 = ∇φ0, γ1 = (X,∇φ0(X)), T2 = ∇ψ and γ2 = (X,∇ψ(X)).
Since both γ1, γ2 are optimal, we know that the coupling γ = (γ1 + γ2)/2 is also optimal:∫

∥x− y∥2dγ = 1
2

∫
∥x− y∥2dγ1 + 1

2

∫
∥x− y∥2dγ2.

By Brenier’s theorem, we then conclude that γ = (X,∇ϕ(X)) for some convex function ϕ.
But now, we see that the conditional distribution of Y |X for γ should take value T1(X) with
probability 1/2 and T2(X) with probability 1/2, but since γ is also realized by an OT map this
is impossible unless T1 = T2 almost surely.

2 Implications
Under the conditions for the uniqueness theorem, we know that if a valid transport map is the
gradient of a convex function, then it must be the unique OT map.

1D setting: In the 1D setting, when µ has a density, this gives an alternate direct proof of
the optimality of the map T0(X) = F †

ν (Fµ(X)). We observe that this map is a valid transport
map, and is an increasing function. It is cyclically monotone, and so induced by the gradient
of a convex function, and hence is the unique OT map.

Gaussians: Suppose that µ = N(m1,Σ1) and ν = N(m2,Σ2). A natural transport map to
consider is to take:

T (x) = Σ1/2
2 Σ−1/2

1 (x−m1) +m2.

However, this is not the gradient of a convex function, so cannot be the OT map. If an affine
map is the gradient of a convex function, we’d want the scaling matrix to be PSD. One can
verify that taking,

T (x) = Σ−1/2
1 (Σ1/2

1 Σ2 Σ1/2
1 )1/2 Σ−1/2

1 (x−m1) +m2,

leads to a valid map which is the gradient of a convex function. Appealing to our uniqueness
theorem, we then conclude that this is in fact the (unique) OT map.
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3 The Semi Dual
From the dual OT program one can learn many nice structural properties. Recall the Kan-
torovich dual,

sup
f∈L1(µ),g∈L1(ν),
f(x)+g(y)≤∥x−y∥2

[∫
fdµ+

∫
gdν

]
.

Suppose we held f fixed, and computed for this fixed f what the best possible g would be. We
would see that the choice:

g(y) = inf
x

{∥x− y∥2 − f(x)},

would be the best function satisfying all the inequality constraints. Similar reasoning as before
will show that this is an L1(ν) function. The function g above is called the c-transform of f
and is denoted f c. Then our reasoning shows that we could rewrite the dual as:

sup
f∈L1(µ)

[∫
fdµ+

∫
f cdν

]
.

This reasoning (of replacing one of the two Kantorovich potentials by the c-transform of the
other) works for any cost c, under appropriate moment assumptions. For the quadratic cost,
one can go even further and see that up to a simple transformation, we could equivalently solve
the so-called semi-dual program:

inf
ϕ∈L1(µ)

[∫
ϕdµ+

∫
ϕ∗dν

]
,

where ϕ∗ is the Fenchel conjugate of ϕ. The relationship between the semi-dual and the Kan-
torovich dual is summarized in the following theorem:

Theorem 2. Let µ, ν be two measures with finite second moments. Then:

1. A pair of functions (f0, g0) is optimal for the Kantorovich dual, if and only if, f0(x) =
∥x∥2 − 2φ0(x) and g0(y) = ∥y∥2 − 2φ∗

0(y), where φ0 is an optimizer of the semi-dual.

2. The optimal values of the two programs are related as:

dual-opt =
∫

∥x∥2dµ+
∫

∥y∥2dν − 2semi-dual-opt.

Proof. To begin with, let us re-write the Kantorovich dual with the reparametrization of f(x) =
∥x∥2 − 2ϕ(x), and g(y) = ∥y∥2 − 2ψ(y). Then the objective:∫

fdµ+
∫
gdν =

∫
∥x∥2dµ+

∫
∥y∥2dν − 2

(∫
ϕdµ+

∫
ψdν

)
.

Similarly, the constraint that f(x) + g(y) ≤ ∥x− y∥2 translates to:

ϕ(x) + ψ(y) ≥ xT y,

and we obtain the equivalent (up to reparametrization) program:

inf
ϕ∈L1(µ),ψ∈L1(ν)
ϕ(x)+ψ(y)≥xT y

[∫
ϕdµ+

∫
ψdν

]
.

Now, we can once again apply the reasoning we used to introduce the c-transform of holding ϕ
fixed, and computing the optimal ψ, and this reasoning leads us to the semi-dual program.
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We can also go further and extract some more structural properties of the optimizer of the
semi-dual. In particular, iterating the c-transform argument will show that we can start with
any function ϕ, conclude that we can replace it with ϕ∗∗ (which is a closed convex function).
This argument thus shows that when solving the semi-dual we can restrict our attention to
closed convex functions.

4 Duality when p = 1
The c-transform idea also gives us important structural insights into the optimal transport
program when p = 1. To begin with we need a strong duality result for general ℓp costs which
we state without proof:

Theorem 3. Fix p ≥ 1 and let µ, ν be two measures with finite p-th moment. Then:

W p
p (µ, ν) = inf

γ∈Γµ,ν

∫
∥x− y∥pdγ = sup

f∈L1(µ),g∈L1(ν),
f(x)+g(y)≤∥x−y∥p

[∫
fdµ+

∫
gdν

]
.

We now need two structural properties of the c-transform when c(x, y) = ∥x− y∥.

1. The c-transform of any function is 1-Lipschitz.

2. The c-transform of any 1-Lipschitz function f is −f ..

Proof. Claim 1: Define,

g(y) = inf
x

{∥x− y∥ − f(x)},

and we would like to show that this is 1-Lipschitz. First, notice that for a fixed x0, the function
∥x0 − y∥ − f(x0) is clearly 1-Lipschitz. It is also easy to verify that the infimum of a collection
of 1-Lipschitz functions is 1-Lipschitz, so we conclude that g is 1-Lipschitz.

Claim 2: Let f be a 1-Lipschitz function. Then we know that −f is also 1-Lipschitz and we
have:

−f(y) ≤ ∥x− y∥ − f(x).

Taking the infimum over x we obtain that, −f ≤ f c. On the other hand,

f c(y) = inf
x

{∥x− y∥ − f(x)} ≤ −f(y),

by taking x = y. So we conclude that, f c = −f .

Now, we are ready to prove the following theorem:

Theorem 4. Let µ, ν be measures with bounded 1-st absolute moment. Then:

Wp(µ, ν) = sup
f,1−Lipschitz

∫
fdµ− fdν.

Proof. By strong duality we know that,

W1(µ, ν) = sup
f∈L1(µ),g∈L1(ν),
f(x)+g(y)≤∥x−y∥

[∫
fdµ+

∫
gdν

]
.
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For a fixed function f , we may replace g by f c, and then replace f by f cc, and finally negate
both functions, and use the structural properties above to obtain that:

W1(µ, ν) = sup
f∈L1(µ)

[∫
f ccdµ+

∫
f cdν

]
= sup

f∈L1(µ),1−Lipschitz

[∫
fdµ−

∫
fdν

]
.

Now, any 1-Lipschitz function is integrable since for any y:∫
|f |dµ ≤ |f(y)| +

∫
|f(x) − f(y)|dµ ≤ |f(y)| +

∫
∥x− y∥dµ < ∞,

and we obtain the theorem as a consequence.

5 Estimation of and under the Wasserstein distance
We will begin our journey by considering the following question: suppose we are givenX1, . . . , Xn ∼
µ, where µ is supported on [0, 1]d. How well can we estimate µ in the Wasserstein sense. This
is a question of density estimation where our loss is measured using the Wasserstein distance.

A first question to ponder is – why is this task even feasible/sensible? We have made no
smoothness-type assumptions, and it certainly not the case that we can estimate µ in more
classical distances (TV, Hellinger, χ2 etc.) without these assumptions.

A second question to answer is – what are sensible estimators of the distribution? Again,
since we have made no smoothness assumptions our favorite non-parametric estimators (kernel/wavelet-
type estimators) should seem like bad ideas. However, we’re still solving a non-parametric
density estimation task so what other options can we consider?

Recall, that we’ve made this remark earlier – Wasserstein distances behave quite differently
from classical distances. In particular, we have noted that the Wasserstein distance is well-
defined between a discrete and continuous distribution. Perhaps, it makes sense to simply use
the empirical measure:

µ̂ := µn := 1
n

n∑
i=1

δXi ,

as an estimate of the underlying distribution µ.
We will give a couple of different proofs of the following result:

Theorem 5. Suppose that µ is supported on [0, 1]d then:

EW1(µn, µ) ≲
√
d


n−1/2 if d = 1√

logn
n if d = 2

n−1/d if d ≥ 3.

It is worth noting that (a) surprisingly the empirical measure is consistent without smoothing
and without smoothness assumptions, (b) the rate suffers from the curse-of-dimensionality (i.e.
in high-dimensions the empirical measure converges very slowly to µ). We will eventually also
show complementary lower bounds, i.e. we will show that this rate is unimprovable in general.
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