Statistical OT Lecture 6: More Duality

1 Uniqueness

Using the fundamental theorem from last lecture, it is quite simple to argue that the OT
coupling must be (essentially) unique.

Theorem 1. Suppose that u,v are measures with two bounded moments such that, u has
a density, and X ~ p. Then there exists a convex function ¢g such that (X, Vpo(X)) is an
optimal coupling. Furthermore, Vg is unique, i.e. if (X, V(X)) is a valid coupling with
convex, then Vg = Vi, p almost surely.

Proof. By Brenier’s theorem we already know that there exists a convex function g such that
(X, Vo) is an optimal coupling. By the fundamental theorem, we know that (X, Vi(X)) is
also an OT coupling. Now let 71 = Vo, 11 = (X, Vpo(X)), T = V¢ and 72 = (X, Vy(X)).
Since both v1,72 are optimal, we know that the coupling v = (1 + 2)/2 is also optimal:
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By Brenier’s theorem, we then conclude that v = (X, V¢(X)) for some convex function ¢.
But now, we see that the conditional distribution of Y'|X for v should take value T7(X) with
probability 1/2 and T5(X) with probability 1/2, but since + is also realized by an OT map this
is impossible unless 77 = T5 almost surely. O

2 Implications

Under the conditions for the uniqueness theorem, we know that if a valid transport map is the
gradient of a convex function, then it must be the unique OT map.

1D setting: In the 1D setting, when u has a density, this gives an alternate direct proof of
the optimality of the map Tp(X) = FJ(F,(X)). We observe that this map is a valid transport
map, and is an increasing function. It is cyclically monotone, and so induced by the gradient
of a convex function, and hence is the unique OT map.

Gaussians: Suppose that © = N(my,¥;1) and v = N(mg,¥2). A natural transport map to
consider is to take:

T(z) = 25/221_1/2(93 —m1) + ma.

However, this is not the gradient of a convex function, so cannot be the OT map. If an affine
map is the gradient of a convex function, we’d want the scaling matrix to be PSD. One can
verify that taking,

T(z) = 2745725, SYHY2 572 (2 — my) + mo,

leads to a valid map which is the gradient of a convex function. Appealing to our uniqueness
theorem, we then conclude that this is in fact the (unique) OT map.



3 The Semi Dual

From the dual OT program one can learn many nice structural properties. Recall the Kan-
torovich dual,

sup {/fd,u—k/gdy} .
feLt (u),geLt (v),
f(@)+g(y)<|lz—y|?

Suppose we held f fixed, and computed for this fixed f what the best possible g would be. We
would see that the choice:

g(y) = inf {|lz —y[I* — f(x)},

would be the best function satisfying all the inequality constraints. Similar reasoning as before
will show that this is an L'(v) function. The function g above is called the c-transform of f
and is denoted f¢. Then our reasoning shows that we could rewrite the dual as:

fesilllzu) [/fdu%—/fcdul

This reasoning (of replacing one of the two Kantorovich potentials by the c-transform of the
other) works for any cost ¢, under appropriate moment assumptions. For the quadratic cost,
one can go even further and see that up to a simple transformation, we could equivalently solve
the so-called semi-dual program:

inf {/ odp + /d)*du] ,
peLt(n)
where ¢* is the Fenchel conjugate of ¢. The relationship between the semi-dual and the Kan-
torovich dual is summarized in the following theorem:

Theorem 2. Let p, v be two measures with finite second moments. Then:

1. A pair of functions (fo, go) is optimal for the Kantorovich dual, if and only if, fo(x) =
|2]|? — 2p0(x) and go(y) = ||y||* — 2¢5(y), where g is an optimizer of the semi-dual.

2. The optimal values of the two programs are related as:

dual-opt = / |z ||2dp + / |y||*dv — 2semi-dual-opt.

Proof. To begin with, let us re-write the Kantorovich dual with the reparametrization of f(z) =
lz)|? — 2¢(x), and g(y) = ||ly||> — 2¢(y). Then the objective:

[ san+ [gdv= [ laldu+ [y~ ( [oan+ [ wdu).

Similarly, the constraint that f(x) + g(y) < ||z — y||* translates to:

o(z) +v(y) > z'y,

and we obtain the equivalent (up to reparametrization) program:

inf /d / d].
e | E

o(@)+y(y)>zTy

Now, we can once again apply the reasoning we used to introduce the c-transform of holding ¢
fixed, and computing the optimal 1, and this reasoning leads us to the semi-dual program. [



We can also go further and extract some more structural properties of the optimizer of the
semi-dual. In particular, iterating the c-transform argument will show that we can start with
any function ¢, conclude that we can replace it with ¢** (which is a closed convex function).
This argument thus shows that when solving the semi-dual we can restrict our attention to
closed convex functions.

4 Duality when p=1

The c-transform idea also gives us important structural insights into the optimal transport
program when p = 1. To begin with we need a strong duality result for general £, costs which
we state without proof:

Theorem 3. Fix p > 1 and let u, v be two measures with finite p-th moment. Then:
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We now need two structural properties of the c-transform when c(z,y) = ||z — y||.
1. The c-transform of any function is 1-Lipschitz.

2. The c-transform of any 1-Lipschitz function f is —f..

Proof. Claim 1: Define,
9(y) = inf{{lz —yll = f(2)},

and we would like to show that this is 1-Lipschitz. First, notice that for a fixed xzg, the function
llxo — yll — f(zo) is clearly 1-Lipschitz. It is also easy to verify that the infimum of a collection
of 1-Lipschitz functions is 1-Lipschitz, so we conclude that ¢ is 1-Lipschitz.

Claim 2: Let f be a 1-Lipschitz function. Then we know that — f is also 1-Lipschitz and we
have:

—fy) <z —yll = f(2).
Taking the infimum over x we obtain that, —f < f°. On the other hand,
fy) = mf{[lz —yl| = f(2)} < —f(y),

by taking x = y. So we conclude that, f¢ = —f.

Now, we are ready to prove the following theorem:

Theorem 4. Let p, v be measures with bounded 1-st absolute moment. Then:

Wyluv)= swp [ fdp— fav.
f,1—Lipschitz

Proof. By strong duality we know that,
Wi(pv) =  sup Uﬁm+/m@.

feLY(u),geL (v
f(x)-i-g( )<llz— y||



For a fixed function f, we may replace g by f¢, and then replace f by f, and finally negate
both functions, and use the structural properties above to obtain that:

Wi(p,v) = sup {/fccdu—l—/fcdy} = sup {/fd,u /fdl/}.
feL () fEL(11),1—Lipschitz

Now, any 1-Lipschitz function is integrable since for any y:

[1#1an <1t @)+ [15@) = £@)idu < 15w+ [ llo = yldu < oo,

and we obtain the theorem as a consequence. O

5 Estimation of and under the Wasserstein distance

We will begin our journey by considering the following question: suppose we are given X7, ..., X, ~
i, where p is supported on [0, 1]d. How well can we estimate p in the Wasserstein sense. This
is a question of density estimation where our loss is measured using the Wasserstein distance.

A first question to ponder is — why is this task even feasible/sensible? We have made no
smoothness-type assumptions, and it certainly not the case that we can estimate p in more
classical distances (TV, Hellinger, x? etc.) without these assumptions.

A second question to answer is — what are sensible estimators of the distribution? Again,
since we have made no smoothness assumptions our favorite non-parametric estimators (kernel /wavelet-
type estimators) should seem like bad ideas. However, we're still solving a non-parametric
density estimation task so what other options can we consider?

Recall, that we’ve made this remark earlier — Wasserstein distances behave quite differently
from classical distances. In particular, we have noted that the Wasserstein distance is well-
defined between a discrete and continuous distribution. Perhaps, it makes sense to simply use
the empirical measure:

n
2 Oxi

as an estimate of the underlying distribution u.
We will give a couple of different proofs of the following result:

Theorem 5. Suppose that p is supported on [0, 1]¢ then:

n=2? ifd =1
EW1 (pin, ) S Vi § (/160 if q = 2
n~d if 4 > 3.

It is worth noting that (a) surprisingly the empirical measure is consistent without smoothing
and without smoothness assumptions, (b) the rate suffers from the curse-of-dimensionality (i.e.
in high-dimensions the empirical measure converges very slowly to ). We will eventually also
show complementary lower bounds, i.e. we will show that this rate is unimprovable in general.
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