
Statistical OT Lecture 7: Dual Bounds on W1

1 Estimation of and under the Wasserstein distance
We will begin our journey by considering the following question: suppose we are given X1, . . . , Xn ∼
µ, where µ is supported on [0, 1]d. How well can we estimate µ in the Wasserstein sense. This
is a question of density estimation where our loss is measured using the Wasserstein distance.

Recall that in the last class we saw that it might make sense to simply use the empirical
measure:

µ̂ := µn := 1
n

n∑
i=1

δXi ,

as an estimate of the underlying distribution µ.
We will in the next few lectures give a couple of different proofs of the following result

(building up the necessary background), and then discuss its tightness:

Theorem 1. Suppose that µ is supported on [0, 1]d then:

EW1(µn, µ) ≲
√

d


n−1/2 if d = 1√

log n
n if d = 2

n−1/d if d ≥ 3.

2 Chaining
One natural way to approach our goal is to recall the dual representation of W1:

W1(µn, µ) = sup
f∈Lip1

1
n

n∑
i=1

f(Xi) − Ef.

So to bound the Wasserstein distance, we need to study the (uniform) deviation of a collection of
averages from their expectation. This is the central quantity of study in empirical process theory,
and we will develop one of the most important tools in empirical process theory (chaining).

To begin with, let us define the covering number of a class of functions F . An ε-cover
is a collection of functions {f1, . . . , fN } such that, for any f ∈ F , there is a function fj ∈
{f1, . . . , fN } such that ρ(f, fj) ≤ ε for some metric ρ. We will primarily focus on the case when
the metric is the sup-norm, but most of the ideas generalize straightforwardly. The cardinality
of the minimum ε-cover is the covering number:

N(ε, F , ρ) = min{N : ∃{f1, . . . , fN } an ε-cover of F}.

Covering numbers give us a sensible way of discussing the “size” of (potentially) infinite collec-
tions of functions.

With this in place, we can state a useful result:

Theorem 2. Suppose that F is a collection of functions, with ∥f∥∞ ≤ R, then:

E sup
f∈F

1
n

n∑
i=1

f(Xi) − Ef ≲ inf
τ>0

[
τ + 1√

n

∫ 2R

τ

√
log N(ε, F , ∥ · ∥∞)dε

]
.

The second term on the right is known as the entropy integral. We remark again, we
use ℓ∞-covering numbers in the result above, but the proof is far more general. Before we
turn our attention to proving this result we state another useful result giving the covering

1



numbers for the class of 1-Lipschitz functions. We note that we are interested in Lipschitz
functions on [0, 1]d, and the quantity of interest is invariant to shifting each of the functions
by a constant so without loss of generality we can focus on 1-Lipschitz functions on [0, 1]d for
which f(0, . . . , 0) = 0. Denote this class of functions as F̃ .

Lemma 1.

log N(ε, F̃ , ∥ · ∥∞) ≲ (4
√

d/ε)d.

With these two results in place, it is straightforward to prove Theorem 1 up to an extra log
factor when d = 2. We will return to this log factor at some point.

Proof. Using the chaining result with the covering number bound we obtain that when d = 1:

EW1(µn, µ) ≲ inf
τ>0

[
τ + 1√

n

∫ 1

τ
(4/ε)1/2dε

]
,

and choosing τ = 0, we see that EW1(µn, µ) ≲ n−1/2. When d ≥ 2 the entropy integral diverges
so we need to truncate it (i.e. select τ > 0). Choosing τ = 4

√
dn−1/d, we obtain that,

EW1(µn, µ) ≲ 4
√

dn−1/d + 1√
n

∫ √
d

4
√

dn−1/d
(4

√
d/ε)d/2dε.

When d = 2 the integral is O(log n) and we see that EW1(µn, µ) ≲ (log n)/
√

n. For d > 2 we
have the bound

EW1(µn, µ) ≲
√

dn−1/d,

as desired.

We will devote the rest of our lecture to understanding Theorem 2 and Lemma 1.

3 Proof of Theorem 2

3.1 Preliminaries

It will be useful to first define a sub-Gaussian process:

Definition 1. A collection of random variables {Xt}t∈T is a sub-Gaussian process if E[Xt] = 0,
and

E exp(λ(Xs − Xt)) ≤ exp(λ2ρ(s, t)2/2), ∀ λ ≥ 0, s, t ∈ T.

Throughout we will let D denote the diameter, i.e. D = sups,t∈T ρ(s, t). Our second
definition is that of a Lipschitz process:

Definition 2. A collection of random variables {Xt}t∈T is a Lipschitz process with respect to
a metric ρ if for some v > 0,

|Xs − Xt| ≤ vρ(s, t) ∀ s, t ∈ T.

We were interested in a quantity of the form:

E sup
f∈F

1
n

n∑
i=1

f(Xi) − Ef,

2



and for each f ∈ F defining the random variable Xf = 1
n

∑n
i=1 f(Xi) − Ef . We see that this

collection of random variables has mean 0, and furthermore:

E exp(λ(Xf − Xg)) =
n∏

i=1
E exp(λ/n(f(Xi) − g(Xi) − Ef(Xi) + Eg(Xi)))

≤
n∏

i=1
exp

(
λ2∥f − g∥2

∞
2n2

)
= exp

(
λ2∥f − g∥2

∞
2n

)
,

where the inequality follows from Hoeffding’s lemma. This shows that the empirical process we
are interested in studying is sub-Gaussian with respect to the metric ρ(s, t) = ∥s − t∥∞/

√
n.

Furthermore, it is easy to see from the above proof that:

|Xf − Xg| ≤ 2∥f − g∥∞,

which shows that it is also a Lipschitz process with respect to the metric ρ(s, t) = ∥s− t∥∞/
√

n,
with v = 2

√
n (it will be convenient to use the same metric, and absorb the

√
n scaling into v).

Finally, the diameter of our collection of random variables as measured by ρ(s, t) = ∥s−t∥∞/
√

n
is
√

d/n.
For some intuition, one should view definition 1 as capturing the “in-probability” Lipschitz-

ness of the process, i.e. directly from the definition (and an application of Markov’s inequality)
we see that for a sub-Gaussian process:

P(|Xs − Xt| ≥ tρ(s, t)) ≤ exp(−t2/2).

On the other hand, definition 2 captures the “almost-sure” Lipschitzness of the process. What
our example above shows (and this is typical) is that many processes of interest exhibit much
stronger “in-probability” Lipschitzness versus “almost-sure” Lipschitzness. In the former case
the Lipschitz constant is O(1), and in the latter case it is O(

√
n) when the metric is chosen to

be ∥s − t∥∞/
√

n). We might obtain better bounds if we can correctly exploit this fact.

3.2 Maxima of Sub-Gaussian RVs

We will need one more detour to build our intuition. Our general goal is to understand the
maxima of sub-Gaussian processes, where the index set T is typically infinite. It will be useful
to understand the case where T is finite better first.

Notice, that:

E sup
t

Xt ≤ E
∑

t

|Xt| ≤ |T | sup
t

E|Xt|.

This seems like an extremely naive bound. If Xi had bounded p-th moment, then we could
strengthen this:

E sup
t

Xt ≤ [E sup
t

|Xt|p]1/p ≤ |T |1/p sup
t

[E|Xt|p]1/p.

It should be intuitive that if each of the random variables were σ-sub Gaussian (all moments
are finite) then we could do better:

Lemma 2. If {Xt} is a collection of σ-sub Gaussian random variables then,

E sup
t

Xt ≤
√

2σ2 log |T |.

3



Proof. For any λ > 0,

E sup
t

Xt ≤ 1
λ

logE exp(λ sup
t

Xt)

≤ 1
λ

log
∑

t

E exp(λXt)

≤ 1
λ

[
log |T | + σ2λ2

2

]

≤
√

2σ2 log |T |,

where the first inequality is Jensen’s inequality.

3.3 One-step Discretization

Before we get to the full chaining bound let us prove the following simpler lemma:

Lemma 3. Suppose that {Xt}t∈T is a sub-Gaussian process and Lipschitz process with respect
to the metric ρ then:

E[sup
t

Xt] ≲ inf
τ>0

[
vτ + D

√
log N(T, ρ, τ)

]
.

Proof. Fix any X0 ∈ {Xt}, and let us denote by Xπ(t) the nearest element to Xt in a minimal
τ cover of Xt. Then:

E sup
t

Xt = E sup
t

(Xt − X0)

≤ E sup
t

|Xt − Xπ(t)| + E sup
t

|Xπ(t) − X0|.

Now, the first term is simple to control using the Lipschitzness of the process. The second term
is the supremum of N(T, ρ, τ) D-sub-Gaussian random variables, and we can bound it using
Lemma 2. Together we obtain the desired result.

This result already illustrates the two main ideas we use to bound the supremum of a sub-
Gaussian process (approximation, and a union bound). It turns out however that this bound
is not tight enough on its own. A useful exercise to try is to instantiate this bound for the
collection of Lipschitz functions in 1-D – you will obtain an n−1/3 rate, instead of the correct
n−1/2 rate.

The main problem is that we are not using the fact that this is a sub-Gaussian process at all
(instead, we are simply using the fact that the collection of random variables is sub-Gaussian,
but we have a lot more structure left to exploit). An alternate perspective is simply that we
could attempt to improve this bound, by using a similar technique (of one-step discretization)
to improve our bound on the second term (and then recurse this).
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