
Statistical OT Lecture 8: Chaining and Covering

1 Chaining
In the last case, we stated Dudley’s chaining bound, and worked through some preliminaries.

Theorem 1. Suppose that F is a collection of functions, with ∥f∥∞ ≤ R, then:

E sup
f∈F

1
n

n∑
i=1

f(Xi) − Ef ≲ inf
τ>0

[
τ + 1√

n

∫ 2R

τ

√
log N(ε, F , ∥ · ∥∞)dε

]
.

1.1 Preliminaries

It will be useful to first define a sub-Gaussian process:

Definition 1. A collection of random variables {Xt}t∈T is a sub-Gaussian process if E[Xt] = 0,
and

E exp(λ(Xs − Xt)) ≤ exp(λ2ρ(s, t)2/2), ∀ λ ≥ 0, s, t ∈ T.

Throughout we will D denote the diameter, i.e. D = sups,t∈T ρ(s, t). Our second definition
is that of a Lipschitz process:

Definition 2. A collection of random variables {Xt}t∈T is a Lipschitz process with respect to
a metric ρ if for some v > 0,

|Xs − Xt| ≤ vρ(s, t) ∀ s, t ∈ T.

We were interested in a quantity of the form:

E sup
f∈F

1
n

n∑
i=1

f(Xi) − Ef,

and for each f ∈ F defining the random variable Xf = 1
n

∑n
i=1 f(Xi) − Ef . We see that this

collection of random variables has mean 0, and furthermore:

E exp(λ(Xf − Xg)) =
n∏

i=1
E exp(λ/n(f(Xi) − g(Xi) − Ef(Xi) + Eg(Xi)))

≤
n∏

i=1
exp

(
λ2∥f − g∥2

∞
2n2

)
= exp

(
λ2∥f − g∥2

∞
2n

)
,

where the inequality follows from Hoeffding’s lemma. This shows that the empirical process we
are interested in studying is sub-Gaussian with respect to the metric ρ(s, t) = ∥s − t∥∞/

√
n.

Furthermore, it is easy to see from the above proof that:

|Xf − Xg| ≤ 2∥f − g∥∞,

which shows that it is also a Lipschitz process with respect to the metric ρ(s, t) = ∥s− t∥∞/
√

n,
with v =

√
n (it will be convenient to use the same metric, and absorb the

√
n scaling into v).

Finally, the diameter of our collection of random variables as measured by ρ(s, t) = ∥s−t∥∞/
√

n
is
√

d/n.
For some intuition, one should view definition 1 as capturing the “in-probability” Lipschitz-

ness of the process, i.e. directly from the definition (and an application of Markov’s inequality)
we see that for a sub-Gaussian process:

P(|Xs − Xt| ≥ tρ(s, t)) ≤ exp(−t2/2).
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On the other hand, definition 2 captures the “almost-sure” Lipschitzness of the process. What
our example above shows (and this is typical) is that many processes of interest exhibit much
stronger “in-probability” Lipschitzness versus “almost-sure” Lipschitzness. In the former case
the Lipschitz constant is O(1), and in the latter case it is O(

√
n) when the metric is chosen to

be ∥s − t∥∞/
√

n). We might obtain better bounds if we can correctly exploit this fact.

1.2 Proof

Now, let us finally prove Theorem 1. Let us start with a fixed X0 which is a valid 2−k0-net for
some integer k0 (might be negative), i.e. k0 is the largest integer such that 2−k0 ≥ D. Now, we
construct a sequence of ε-nets. Let Nk be a 2−k net and |Nk| = N(T, ρ, 2−k). Let πk(t) denote
the closest point to Xt in Nk. Now, we can write for any integer m:

E sup
t

Xt = E sup
t

(Xt − X0)

≤ E sup
t

(Xt − Xπn(t)) +
m∑

k=k0+1
E sup

t
(Xπk(t) − Xπk−1(t)).

The first term we again control using Lipschitzness, and the second term we control using
sub-Gaussianity. Note however that,

ρ(πk(t), πk−1(t)) ≤ ρ(πk(t), t) + ρ(πk−1(t), t) ≤ 3 × 2−k,

so the k-th term in the second sum is a collection of 3×2−k sub-Gaussian random variables. The
k-th term is a maximum of at most |Nk| × |Nk−1| ≤ |Nk|2 random variables. Using Lemma ??
we get that:

E sup
t

Xt ≲ v2−m +
m∑

k=k0+1
2−k

√
log |Nk|.

Now, we note that:
m∑

k=k0+1
2−k

√
log |Nk| = 2

m∑
k=k0+1

∫ 2−k

2−k−1

√
log N(T, ρ, 2−k)dε

≤ 2
m∑

k=k0+1

∫ 2−k

2−k−1

√
log N(T, ρ, ε)dε

≤ 2
∫ 2−(k0+1)

2−m

√
log N(T, ρ, ε)dε

≤ 2
∫ D

2−m

√
log N(T, ρ, ε)dε.

Now, let us fix any 0 < τ ≤ D, and select m to be the smallest integer such that 2−m ≤ τ , then
we get:

E sup
t

Xt ≲ vτ +
∫ D

τ

√
log N(T, ρ, ε)dε.

This bound applies in general. To recover the specific bound we needed for bounded func-
tions, we simply need to use the result with ρ(s, t) = ∥f − g∥∞/

√
n, D = 2∥f∥∞/

√
n, and

v =
√

n to obtain that:

E sup
f∈F

1
n

n∑
i=1

f(Xi) − Ef ≲ inf
τ>0

√
nτ +

∫ 2R/
√

n

τ

√
log N(F , ρ, ε)dε.
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We then note that N(F , ρ, ε) = N(F , ∥ · ∥∞,
√

nε), so via a change of variables we obtain that:

E sup
f∈F

1
n

n∑
i=1

f(Xi) − Ef ≲ inf
τ>0

√
nτ + 1√

n

∫ 2R

√
nτ

√
N(F , ∥ · ∥∞, ε)dε,

which is precisely the theorem we set out to prove.

2 Covering
In the last class we used the covering numbers for the class of 1-Lipschitz functions. We note
that we are interested in Lipschitz functions on [0, 1]d, and the quantity of interest is invariant
to shifting each of the functions by a constant so without loss of generality we can focus on
1-Lipschitz functions on [0, 1]d for which f(0, . . . , 0) = 0. Denote this class of functions as F̃ .

Lemma 1.

log N(ε, F̃ , ∥ · ∥∞) ≲ (4
√

d/ε)d.

To prove Lemma 1 we will construct an explicit covering of the space of Lipschitz functions.
I will sketch the details here. We fix an integer j ≥ 0, δ > 0 (which we will set later), and let
Qj denote a dyadic partition of the unit cube into cubes of side-length 2−j .

Each element of Qj is a cube of the form 2−j([k1, k1 + 1] × [k2, k2 + 1] × . . . × [kd, kd + 1]),
where k1, . . . , kd ∈ {0, . . . , 2j −1}. We denote these by Qk (for a vector k). To be more rigorous,
we should remove the overlaps between the cubes but we’ll ignore this.

Now, consider the following class of functions H (they are simply piecewise, discretized,
constant on the cubes defined above). H is all functions h which satisfy:

1. h(x) = hk for all x ∈ Qk.

2. hk is an integer multiple of δ.

3. h(0,...,0) = 0.

4. If ∥k − k′∥∞ ≤ 1 (i.e. they are adjacent cubes), then |hk − hk′ | ≤ 2−j
√

d + δ.

We will first show that this collection of functions covers the set of Lipschitz functions if
2−j

√
d + δ ≤ ε, and then show that this collection is not too large. For any given Lipschitz

function f , we will define a function hf , with (hf )k = δ⌊f(2−j(k1, . . . , kd))/δ⌋ for every k. Let
us check this is a function in our collection (the first 3 properties are obviously satisfied):

|(hf )k − (hf )k′ | ≤ δ|⌊f(2−j(k1, . . . , kd))/δ⌋ − ⌊f(2−j(k′
1, . . . , k′

d))/δ⌋|
≤ |f(2−j(k1, . . . , kd)) − f(2−j(k′

1, . . . , k′
d))| + δ

≤ 2−j∥k − k′∥2 + δ

≤ 2−j
√

d + δ.

Now we finally verify that it is a valid cover. For any x ∈ Qk:

|f(x) − hf (x)| ≤ |f(x) − δ⌊f(2−j(k1, . . . , kd))/δ⌋|
≤ |f(x) − f(2−j(k1, . . . , kd))| + δ

≤ diam(Qk) + δ = 2−j
√

d + δ.

We will choose δ = 2−j
√

d. We then need to ensure that 2−j
√

d ≤ ε/2, so we take j large
enough for this, and we note that 2j ≤ 4

√
d/ε for our chosen value of j.
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Now, finally, lets bound the cardinality of our collection of functions. There are 2dj cubes.
Now, if I fix the value of the function on a cube to some value hk, then the value on an adjacent
cube can take at most 5 distinct values. By Lipschitzness the value on an adjacent cube can
differ by at most 2δ, and it has to be an integer multiple of δ. So it can take on only the values
{hk − 2δ, hk − δ, hk, hk + δ, hk + 2δ}. This means that the number of functions is at most 52dj ,
and we get that:

log |H| ≲ 2dj ≲ (4
√

d/ε)d.
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