
Statistical OT Lecture 9: Dyadic Partitioning
and the AKT theorem

1 Dyadic Partitioning
One drawback of the previous approach is that it relies strongly on the dual representation of
W1 – though the technique can be generalized to work for other Wp distances, the connections
to empirical process theory are less transparent.
Note: (See assignment.) I’ll note in passing though that dual bounds are extremely useful
in proving what are called lower complexity adaptation results. Roughly, suppose that we get
samples X1, . . . , Xn ∼ µ, and Y1, . . . , Yn ∼ ν and we want to estimate the 1-Wasserstein distance.
A natural estimate is W1(µn, νn). It turns out that the rate of convergence of W1(µn, νn) to
W1(µ, ν) depends only on the intrinsic dimensionality of the simpler of the two measures (i.e. if
either of these measures are supported on a lower dimensional set then we get fast rates). This
phenomenon is called lower complexity adaptation, and the methods to show that this happens
usually goes through the dual bounds we developed in the previous lecture.

Let us return to our goal of trying to illustrate a different proof of the convergence of
W1(µn, µ) to 0. A different approach to upper bounding W1 is to explicitly construct a coupling
between these measures, and to evaluate its cost. These explicit constructions use an idea called
dyadic partitioning.

1.1 Intuition and Dyadic Partitioning Upper Bound

First, we note the obvious bound that:

W1(µ, ν) ≤
√

d.

Suppose we define the dyadic partition of the cube to be Q1 (with side length 1/2). Then we
can see that, if µ(Q) = ν(Q) for all Q ∈ Q1 then we only need to move mass within the smaller
cubes so we get:

W1(µ, ν) ≤
√

d

2 .

If µ(Q) ̸= ν(Q) then we simply need to move the extra µ mass from cubes where µ(Q) > ν(Q)
to other cubes. The total amount of mass we need to move outside the small cubes is at most:

∆1 =
∑

Q∈Q1

(µ(Q) − ν(Q))+ = 1
2

∑
Q∈Q1

|µ(Q) − ν(Q)|.

Putting these together we get a refined bound:

W1(µ, ν) ≤
√

d × ∆1 +
√

d

2 .

Recursing this argument we obtain the dyadic partitioning upper bound. Concretely, define Qj

to be the dyadic partition of the cube with side length 2−j and define:

∆j = 1
2

∑
Q∈Qj

|µ(Q) − ν(Q)|,

then we have the following theorem:
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Theorem 1. For any µ, ν supported on the unit cube, for any J ≥ 0,

W1(µ, ν) ≤
√

d
J−1∑
j=0

2−j∆j+1 +
√

d2−J .

One can find a more formal proof of this theorem in various places (it is notationally quite
heavy even though the intuition is simple). Taking this as given we can now give an alternate
proof of the rates of convergence of the empirical measure in the W1 distance. Note, at various
points the similarities between this calculation and the chaining calculation we did earlier.

As a direct consequence of Theorem 1 we have that:

EW1(µn, µ) ≤
√

d

2

J−1∑
j=0

2−j
∑

Q∈Qj+1

E|µn(Q) − µ(Q)| +
√

d2−J

≤
√

d

2

J−1∑
j=0

2−j2d(j+1)/2

 ∑
Q∈Qj+1

[E|µn(Q) − µ(Q)|]2
1/2

+
√

d2−J

≤
√

d

2

J−1∑
j=0

2−j2d(j+1)/2

 ∑
Q∈Qj+1

E|µn(Q) − µ(Q)|2
1/2

+
√

d2−J ,

where both inequalities use Cauchy-Schwarz. Now, E|µn(Q) − µ(Q)|2 ≤ µ(Q)/n (this is simply
a Binomial variance), so we have that,

EW1(µn, µ) ≤
√

d

2
√

n

J−1∑
j=0

2−j2d(j+1)/2 +
√

d2−J .

When d = 1 we can choose J = ∞, and obtain that EW1(µn, µ) ≲ 1/
√

n. When d = 2, choose
J = log n, and we obtain that,

EW1(µn, µ) ≲ log n√
n

,

and finally for d ≥ 3 we take (J + 1) = ⌈log n1/d⌉, and obtain that EW1(µn, µ) ≲
√

dn−1/d.

2 The Case when d = 2
In this section, we will follow the paper of Bobkov-Ledoux (A simple Fourier analytic...) to give
a sharp bound when d = 2. For historical context, the original paper that proved this result
is quite famous in applied probability (it is known as the AKT theorem after the authors).
Talagrand also wrote papers, developing and applying the “generic chaining” method to this
case. The Fourier analytic proof is quite simple/elegant and will give us another way to think
about Wasserstein distances (roughly, as “inverse Sobolev norms”) that will also be useful to
understand the case when the measures are smooth.

To apply Fourier analytic techniques we will first define a variant of the W1 distance:

W̃1(µ, ν) = sup
f∈L̃ip1

∫
fdµ −

∫
fdν,

where L̃ip1 are the set of 1-Lipschitz, C∞ functions, which are 2π periodic on Rd. It is obvious
that, W̃1(µ, ν) ≤ W1(µ, ν) since we have added some restrictions to the test functions. It turns
out that for measures supported on [0, 1]d they in fact coincide:
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Lemma 1. Suppose µ, ν have support in [0, 1]d then:

W1(µ, ν) = W̃1(µ, ν).

Proof. As we discussed above W̃1 adds some restrictions to the test functions, and we need to
argue that they don’t change the distance. Intuitively, you should imagine that if I give you a
function that is defined on [0, 1]d I can extend it Lipschitzly to [0, 2π]d. Concretely, consider:

f̃(y) = sup
x∈[0,1]d

{f(x) − dTd(x, y)},

where dTd(x, y) = infz∈Zd ∥x − y − 2πz∥ is the torus distance (i.e. the distance on [0, 2π]d with
ends identified). For any x ∈ [0, 1]d the function g(y) = f(x) − dTd(x, y) is 2π-periodic, and
Lipschitz, so f̃ is also 2π-periodic and Lipschitz.

Now, on [0, 1]d, f̃(y) ≥ f(y), (since we can choose x = y in the supremum), and on [0, 1]d
we know that dTd(x, y) = ∥x − y∥, so we have that,

f(x) − dTd(x, y) = f(x) − ∥x − y∥ ≤ f(y),

so we obtain that f(y) ≥ f̃(y). Thus, the integral of µ − ν (which is supported inside [0, 1]d)
against f is identical to the integral against f̃ .

The restriction to C∞ functions does not change anything – we can always mollify a Lipschitz
function (for instance, convolve it with a “mollifier” and let its bandwidth go to 0).

2.1 Fourier Analysis

For a measure µ we can define its characteristic function:

ϕµ(m) = E exp(imT X), m ∈ Zd.

Then we can show that:

Lemma 2.

W̃1(µ, ν)2 ≤
∑

m∈Zd\{0}

1
∥m∥2 |ϕµ(m) − ϕν(m)|2.

This representation is the key. It is similar in some ways to the dyadic partitioning bound –
we are computing how much the distributions differ at higher and higher frequencies (just like
in the dyadic partitioning), and then downweighting the higher frequency discrepancies, and
putting it together. It will turn out however that this bound is sharper when d = 2. For some
heuristic background that is maybe more familiar to statisticians, it is useful to think about the
1D case (everything carries over to the general case). Given a (square integrable) function, we
can imagine writing it in a nice orthonormal basis (like the Fourier basis):

f =
∞∑

j=1
θjϕj ,

where θj are some coefficients, and ϕj are orthonormal basis functions. Now, we could imagine
smoothness (say Hölder or Sobolev smoothness), as restrictions on the coefficients. Roughly, a
s-Hölder function will have coefficients which satisfy:

∞∑
j=1

j2sθ2
j ≤ M < ∞,
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i.e. the coefficients “decay” so there is very little contribution from higher-order terms. Now,
suppose I took the measures µ, ν and suppose they had densities (abusing notation call them
µ, ν), then we could expand them in the basis to see that,∫

f(dµ − dν) =
∞∑

j=1
(αj − βj)θj ,

where αj and βj are the coefficients of µ, ν in our basis. You could now solve the problem:

sup
θ:

∑∞
j=1 j2sθ2

j ≤M

∞∑
j=1

(αj − βj)θj .

When s = 1, this would correspond to W1, and you could explicitly solve the above maximization
to obtain that,

W1(µ, ν) ≤

√√√√ ∞∑
j=1

(αj − βj)2j−2s.

This is sometimes called an “inverse” Sobolev norm – in our case it is just the Lipschitz IPM –
but such expressions are also true of other Wp distances under some assumptions. It is saying
that W1 roughly corresponds to measuring the difference in a basis (like the Fourier basis), but
rather than do so with the usual L2-norm we now down-weigh the higher-frequency deviations.

Proof. The proof roughly makes some of the intuition above precise. Concretely, given a function
f which is C∞ and 2π periodic we can write it in terms of its Fourier series:

f(x) =
∑

m∈Zd

f̂(m) exp(imT x).

We can differentiate through this expression (the coefficients converge to 0 super-algebraically),
and apply Parseval’s identity to see that:

1
(2π)d

∫
[0,2π]d

(∂if(x))2dx =
∑

m∈Zd

m2
i |f̂(m)|2,

and summing we obtain that,

1
(2π)d

∫
[0,2π]d

∥∇f∥2dx =
∑

m∈Zd

∥m∥2|f̂(m)|2.

For a 1-Lipschitz, C∞ function, ∥∇f(x)∥ ≤ 1, so we obtain that,∑
m∈Zd

∥m∥2|f̂(m)|2 ≤ 1.

Continuing we obtain that,∫
f(dµ − dν) =

∑
m∈Zd

f̂(m)(ϕµ(m) − ϕν(m)),

and we know that ϕµ(0) = ϕν(0), so applying Cauchy-Schwarz we obtain that,∫
f(dµ − dν) ≤

√√√√ ∑
m∈Zd\{0}

1
∥m∥2 |ϕµ(m) − ϕν(m)|2.
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2.2 Convolution Smoothing

It will turn out that for the empirical measure the upper bound from Lemma 2 diverges (you
will see hints of why in the sequel), so we need to instead upper bound the distance between a
smoothed empirical measure and the truth using the Lemma, and then bridge the gap.

Let φε denote a multivariate Gaussian with variance ϵId. Then we have the following result:

Lemma 3. For any ε > 0

W̃1(µ, ν) ≤ W̃1(µ, ν ⋆ φε) +
√

dε.

Proof. W̃1 satisfies the triangle inequality so we obtain that,

W̃1(µ, ν) ≤ W̃1(µ, ν ⋆ φε) + W̃1(ν, ν ⋆ φε),

and since W̃1 ≤ W1 we have,

W̃1(µ, ν) ≤ W̃1(µ, ν ⋆ φε) + W1(ν, ν ⋆ φε).

Now, we can construct a coupling of these distributions by sampling X ∼ ν and setting Y =
X +

√
εZ, where Z is an independent standard Gaussian, to obtain that:

W̃1(µ, ν) ≤ W̃1(µ, ν ⋆ φε) +
√

εE∥Z∥,

and the result follows.

2.3 Final Calculation

Applying these results twice (smoothing both measures), and noting that:

ϕν⋆φε(m) = E exp(imT (X +
√

εZ)) = exp(−ε∥m∥2/2)ϕν(m),

we see that, for any ε > 0:

W̃1(µ, ν) ≤ 2
√

dε +
√√√√ ∑

m∈Zd\{0}

1
∥m∥2 exp(−ε∥m∥2)|ϕµ(m) − ϕν(m)|2.

Applying this to the empirical measure we get:

EW1(µn, µ) ≲
√

dε +
√√√√ ∑

m∈Zd\{0}

1
∥m∥2 exp(−ε∥m∥2)E|ϕµn(m) − ϕµ(m)|2,

and noting that ϕµn(m) − ϕµ(m) = 1
n

∑n
i=1 exp(imT Xi) − E exp(imT X), which are bounded in

modulus, so:

E|ϕµn(m) − ϕµ(m)|2 ≤ 1
n

.

Putting these together we get that,

EW1(µn, µ) ≲
√

dε + 1√
n

√√√√ ∑
m∈Zd\{0}

1
∥m∥2 exp(−ε∥m∥2).

Noting that the sum can be upper bounded by the integral
∫

∥x∥≥1 ∥x∥−2 exp(−ε∥m∥2)dx ≲
log(1/ε), we have the bound,

EW1(µn, µ) ≲
√

dε + 1√
n

√
log(1/ε),

and the result for d = 2 with sharp log-factor follows by setting ε = 1/n.
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