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Recall the sequential mean estimation problem

Let (X¢)?2, be a sequence of i.i.d. observations from a distribution P with mean pu.
We have seen elegant approaches for sequentially testing

Ho:p=po, Hi:p# po,
for some pp € R.
» Sequential Level-a Test ¢°: P(3t > 1: ¢}° = 1) < «, under Hj.
» (1 — a)-Confidence Sequence: PVt >1:peCy) >1—a.
» Duality: Given a sequential test (¢}°) for all uy,
Cr = {uo: ¢}° =0} is a (1 — a)-confidence sequence,
and, given a confidence sequence (Cy),

10 = I(uo € Cy) is a level-a sequential test for Hy.
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A natural generalization

» One-Sample Problem. Given observations (X;);2; from a distribution P, and a

known distribution @,
H()ZP:Q, Hlp?éQ

Let D be a divergence, i.e. D(P||Q) =0 if P = Q. Suppose (C});2; is such that

PVt >1: D(P||Q) € C) >1—a.

Then,
gb? =I1(0 ¢ Cy) is a level-a sequential test for H.

» Two-Sample Problem. Given observations (X;);2; from a distribution P AND
observations (Y;)S2, from a distribution @,

HoZP:Q, Hlp?é@

Derive (Cts)7%—1 such that: P(Vt,s > 1: D(P[|Q) € Cis) > 1 — a.
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» Distance between Means: If P and () are univariate,
D(P|Q) = |Ep[X] — Eq[Y]|.

Sequential inference for means is thus a special case.

» Distance between Multivariate Means: More generally,

D(PI|Q) = |Er[X] - EqlY]].
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Some examples of divergences

» Kolmogorov-Smirnov Divergence: If P, Q are univariate, with CDFs F, G,

D(P|Q) = sup |F(x) = G()].

» 1-Wasserstein Distance: D(P||Q) :/ |F(z) — G(x)]|dx.
R
» Kernel Maximum Mean Discrepancy: Given an RKHS H with kernel K,
D*(P|Q) = [lup — noll3, = Ex xrnp[K (X, X"+ Eyyrq [K(Y,Y")] - 2Ex~p [K(X,Y)],
where pp and pug are mean embeddings of P and Q.

These are special cases of so-called Integral Probability Metrics:

D(P|Q) = sup [Ep[f(X)] = Eqlf(Y)]]-
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Some examples which we can sometimes handle

» Total Variation Distance:

D(P|Q) = sup [P(B) - Q(B)].

» Kullback-Leibler Divergence:

D) = [ 106 (55 ) v

D(PIIQ)=/<Z§S—1>2dQ-

These are all special cases of so-called ¢-divergences: For a convex function ¢,

i) = [ ¢ (55 ) de

» y2-Divergence:
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In hindsight, the same tools can be used for certain
functionals which are not divergences

Confidence sequence (Cy) for a functional ®:
PVt>1:®(P)eC) >1—a.
» Multilinear Functionals: For a given nonnegative function h,

®(P) =Ex x~p[h(X, X))

» Conditional Value-at-Risk: If P is univariate, with quantile function F~1,
B(P) = CVaR(P 5/ wdu = Ep[X|X < F-L(5)],

where 6 € (0,1) and the second equality holds if P is continuous.
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General approach

Given observations (X;);2; from P and (Y5)32, from @, define the empirical
distributions
1 1
Pt:tz;éXm QSZSZ;(SYJ
1= 1=

» One-Sample Problem. Show that D(P;||Q)) admits a martingale structure, and
derive

P(vt>1: —l; < D(P||Q) — D(P[|Q) <uz) 21— a.

» Two-Sample Problem. Show that D(F;||Qs) admits a partially ordered
martingale structure, and derive

P(Vt,s > 1: —lys < D(P|Q) — D(P,]|Qs) < uts) > 1 — a.
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Forward filtrations
A forward filtration is an increasing sequence (F¢);2, of o-algebras:
FoCF C...

> JF; is intuitively the set of events that could have happened until time t.
» Think of F; as the information known at time t.

» Canonical filtration:

COZ{@,Q}, Ct:O'(Xl,...,Xt).

C; is the smallest o-algebra containing all events of the form {X; € B}, i=1,...

The conditional expectation of an RV Y given F; is denoted E[Y|F].
E[Y|F:] is our best guess of Y given the information contained in F;.

For instance, E[Y|C;] = E[Y| X1, ..., X;] in the usual sense.
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Forward martingales
A forward martingale with respect to a filtration (F;);2, is a process (S;);2, such
that:

1. S; is Fy-measurable: “S; is constructed based only on information in J;”.

2. We have,
E[Spt1|Ft] = S, t=0,1,...

If 7 = C;, this reduces to the usual definition:
1. S; is some function of Xq,..., X;.

2. We have,
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Forward martingales
A forward martingale with respect to a filtration (F;);2, is a process (S;);2, such
that:

1. S; is Fy-measurable: “S; is constructed based only on information in J;”.

2. We have,
E[Sip1|F] =S, t=0,1,...

Similarly,
» Forward supermartingale: E[S;11|F:] < S; (“decreasing with time”).

t
» Forward submartingale: E[S;11|F;] > S; (“increasing with time”).
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Two key characterizations of martingales
Let (X;) satisfy E[X¢+1]|F:] = 0.

» Sums: S; = 25:1 X; is a martingale.

Conversely, if (S;) is a mean-zero martingale w.r.t. (F;), then there exist (Y;) such
that E[Y;11|F] =0and S, = Y'Y,

Proof. Take Y; = 5; — S;_1.
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Two key characterizations of martingales
Let (X;) satisfy E[X¢+1]|F:] = 0.
» Sums: S; = 25:1 X; is a martingale.

» Nonnegative Products: L; = [[;_,(1 + X;) is a nonneg. martingale if X; > —1.

Conversely, if (L¢) is a mean-one martingale w.r.t. (F;), then there exist Y; > —1
such that E[Y;41|F] = 0 and S; = [['_,(1 + Y;).
Ly Ly — Ly
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Proof. Take Y; =

Xy
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Two key characterizations of martingales
Let (X¢) satisfy E[X;41|F:] = 0.
» Sums: S; = 25:1 X; is a martingale.

» Nonnegative Products: L; = [[;_,(1 + X;) is a nonneg. martingale if X; > —1.

Conversely, if (L¢) is a mean-one martingale w.r.t. (F;), then there exist Y; > —1
such that E[Y;41|F] = 0 and S; = [['_,(1 + Y;).

We have seen similar characterizations for:
» Capital Processes: H§:1(1 + A\ X;) with (A\;) predictable, i.e. \; is F;_1-measurable.

» Likelihood Ratios: []\_, ¢(X;)/p(X:).



Two key characterizations of martingales
Let (X;) satisfy E[X¢+1]|F:] = 0.

» Sums: S; = 25:1 X; is a martingale.
» Nonnegative Products: L; = [[;_,(1 + X;) is a nonneg. martingale if X; > —1.
More generally,

(L¢), (St) are supermartingales w.r.t. (F;)
(Lt), (St) are submartingales w.r.t. (F).
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From forward to reverse martingales
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Reverse martingales

A reverse filtration is a decreasing sequence (R;);2; of o-algebras:
RiDRa D ...

A reverse martingale with respect to (R:)72; is a process (M), such that:
1. M; is R;-measurable for all ¢ > 1.
2. We hayve,
E[MyRis+1] = My, t=1,2....
(Compare to E[S;|Fi—1] = Si—1 for forward martingales.)
Furthermore,
» Reverse supermartingale: E[M;|R;y1] < M1 (compare to E[S;|Fi—1] < Si—1).
» Reverse submartingale: E[M;|R11] > M4+ (compare to E[Si|F—1] > Si—1).
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Remark. If (M) is a reverse martingale w.r.t. (G;), then it is also a reverse martingale

w.r.t.
Rt:O'(Mt,MtJrl,...), t:1,2,...

Proof. (R¢) is the smallest filtration to which (M;) is adapted, i.e. Ry C G;. Thus,

E[M;|Ris1) = E[E[My|Gi41]|Reg1] = E[Mys1|Rig1] = Mysq.



Sample averages are reverse martingales
Claim. If (X;);2, is a sequence of i.i.d. random variables, then M; = %25:1 X;isa
reverse martingale.

Before proving this, let us try to guess the relevant reverse filtration.

Remark. If (M) is a reverse martingale w.r.t. (G;), then it is also a reverse martingale

w.r.t.
Rt:O'(Mt,Mt+1,...), t:1,2,...

What is R;? If we know M; and M1, then we also know:

t+1 t
Xppr = (t+ DMy —tMy =Y Xi = Y Xi = Xop1.
=1 =1

Thus:
Rt = O'(Mt,XtJrl,XtJrg, e )
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Sample averages are reverse martingales

Claim. If (X;){2, is a sequence of i.i.d. random variables, then M; = } i Xisa
reverse martingale with respect to the filtration:

Ri = o(My, Xei1, Xeia,...), t=1,2,...
Proof. The exchangeability of (X;) implies
E[X;| M) = E[X;|Myq], 4,5 =1,...,t+1,
hence, by independence (in fact, exchangeability suffices),
E[X;|Ri+1] = E[Xj|Reya], 4,5=1,...,t+1

Thus,
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1
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Sample averages are reverse martingales

Claim. If (X;){2, is a sequence of i.i.d. random variables, then M; = } i Xisa
reverse martingale with respect to the filtration:

Ri = o(My, Xei1, Xeia,...), t=1,2,...
Proof. The exchangeability of (X;) implies
E[X;| M) = E[X;|Myq], 4,5 =1,...,t+1,
hence, by independence (in fact, exchangeability suffices),
E[X;|Ri+1] = E[Xj|Reya], 4,5=1,...,t+1

Thus,

t 1 t

t+1

=1 7

1
E[Xi‘RHﬂ = E[MtH’RtH] = Mt+1-
1

+



General (Sub, Super)Martingales

Canonical Representation

Maximal Inequalities

Frwrd Supermart. + E[X;|Fi—1] <0

Frwrd Mart. Xo;_zijz__l_ Xi7 E[X;|Fi—1] =0

Frwrd Submart. i €/ E[X;|Fi—1] >0
?

Rev Supermart.
Rev Mart.
Rev Submart.

0 ZZ:I X, ]E[Xi|72t+;] = M1

Nonnegative (Sub, Super)Martingales

Frwrd Supermart.
Frwrd Mart.
Frwrd Submart.

E X;|Fi—1] <0
Xollin (14 Xi), E{Xi{]:ifﬂ =0

Rev Supermart.
Rev Mart.
Rev Submart.
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Nonnegative reverse martingales

We don’t have a canonical form for nonnegative reverse martingales, but we can mimick

one. e.g.: If My = (1/t) 30_, X,
exp(M;) = Hexp (X;/t) is a reverse submartingale.

Indeed, if ¢ : R — R is a convex function, and (M) is a reverse martingale w.r.t. (R¢),
then (¢(My))22, is a reverse submartingale w.r.t. (R;).

Proof. Follows from Jensen’s inequality:

E[p(M)[Rit1] = ©(E[Mi|Riy1]) = o(Mit1).



General (Sub, Super)Martingales

Canonical Representation

Maximal Inequalities

Frwrd Supermart. + E[X;|Fi—1] <0
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Nonnegative (Sub, Super)Martingales

Frwrd Supermart.
Frwrd Mart.
Frwrd Submart.

E X;|Fi—1] <0
Xollin (14 Xi), E{Xi{]:ifﬂ =0

Rev Supermart.
Rev Mart.
Rev Submart.

?
Example: ], exp(X;/t)
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martingales

» Ville’s Inequality. If (L;) is a nonnegative forward supermartingale,

E[L
P3t>1:L; >u) < { 0], u > 0.
u

» Doob’s Submartingale Inequality. If (L;) is a nonnegative forward
submartingale, then for all T' > 1,
E[L7]

PE<T:L;>u)< , u>0.
U
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For T' > 1, set
Lt = MT—t+17 Rt - -7:T—t+la 1 S t S T.
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Ville’s Inequality for Reverse Submartingales

Let (M;) be a nonnegative reverse submartingale with respect to (R;).
For T' > 1, set
Lt = MT—t+17 Rt - -7:T—t+la 1 S t S T.

Then, (L)L, is a nonnegative forward submartingale with respect to (R;)’_;. By
Doob’s submartingale inequality,
E[L7]

PEt<T:L;>u)< , u>0.
u

This translates into
E[M;]

PE<T:M >u)<
u




Ville’s Inequality for Reverse Submartingales

Let (M) be a nonnegative reverse submartingale with respect to (R¢).
For T' > 1, set
Ly = Mr—41, Ri=Fr—g1, 1<t<T.

Then, (L)L, is a nonnegative forward submartingale with respect to (R;)’_;. By
Doob’s submartingale inequality,
E[L7]

PEt<T:L;>u)< , u>0.
u

This translates into
E[M;]

PEt<T: M, >u) <
u

Taking T' — oo leads to Ville’s inequality for reverse submartingales:

M)
u b

PEt>1: M, >u) <=

u > 0.




General (Sub, Super)Martingales

Canonical Representation

Maximal Inequalities

Frwrd Supermart. + E[X;|Fi—1] <0

Frwrd Mart. Xo;_zi;_l_ Xi, E[X;|Fi—1] =0

Frwrd Submart. i €S E[X;|Fi—1] >0
Rev Supermart. ?

Rev Mart.
Rev Submart.

% ZE:I Xi, ]E[Xi|Rt+;] = M1

Nonnegative (Sub, Super)Martingales

Frwrd Supermart.

Frwrd Mart.
Frwrd Submart.

P(3t>0:L; >u) <E[Lo]/u

P(Et<T:L;>u) <E[Lr]/u

Rev Supermart.
Rev Mart.
Rev Submart.

E X;|Fi—1] <0

Xollis (14 Xi), E{Xi{]:ifﬂ =0

Xi S fi)Xi Z _1 E[Xi|.Fi_1] 2 O
?

Example: [], exp(X;/t)

<
P(3t<T: M, > u) < E[Mz]/u

P(3t>1: My > u) <E[M]/u



Measure-Valued Martingales and Exchangeable Filtrations



We know that if (X;);2; is a sequence of exchangeable RVs, then

t ¢

1 1

n E X; is arev. martingale w.r.t. o (t E X, Xey1, Xego, .-
i=1 i=1



We know that if (X;);2; is a sequence of exchangeable RVs, then

t ¢
1 1
n E X; is arev. martingale w.r.t. o (t E X, Xty1, Xito,. ) .
i=1 i=1

More generally, for any measurable function f,

~ | =

¢ t
Zf(X,) is a rev. martingale w.r.t. o (1 Zf(Xi),f(XtH),f(XHg), . ) .
i=1

i=1



We know that if (X;);2; is a sequence of exchangeable RVs, then

t ¢
1 1
n E X; is arev. martingale w.r.t. o (t E X, Xty1, Xito,. ) .
i=1 i=1

More generally, for any measurable function f,

t
Zf(X,) is a rev. martingale w.r.t. o ( Zf f(Xet1), f(Xig2), . ) .
i=1

Question: Does there exist a filtration (&) such that for all f, %22:1 f(X;)isa
reverse martingale with respect to (&)7



We know that if (X;);2; is a sequence of exchangeable RVs, then

t ¢
1 1
n E X; is arev. martingale w.r.t. o (t E X, Xty1, Xito,. ) .

i=1 i=1

More generally, for any measurable function f,

t
1
n Zf(X,) is a rev. martingale w.r.t. o ( Zf f(Xet1), f(Xig2), . ) .
i=1

Question: Does there exist a filtration (&) such that for all f, %22:1 f(X;)isa
reverse martingale with respect to (&)7
Answer: All we need is to ensure E[X;|&] = E[X;|&] for all 4,5 =1,...,¢
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The Exchangeable Filtration

Given a sequence of random variables (X;);2,, the exchangeable filtration (&), is
defined by

& =0 ({h(Xl,Xg,...,Xt) ~ h is measurable and } U {Xt+17Xt+27"'}> '

" permutation-symmetric

Equivalently, & is the set of events B whose indicator functions Ip are functions of
(Xt)z(‘,)ilv
IB = g(Xl,XQ,...)

such that
g(leXQa .. ) = g(XT(1)7X’T(2)7 v aXT(t)aXt+17Xt+2a cee )a

for all permutations 7 of {1,...,t}.
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Recall that P, = % Z§=1 0x, denotes the empirical measure, and we have
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Theorem: Let (X;);2, be a sequence of exchangeable random variables. Then, for any
bounded and measurable function f, ([ fdP;) is a reverse martingale with respect to
(&:). The converse holds true if (X;) is stationary (Bladt 2019, Kallenberg 2005).



The Exchangeable Filtration

Recall that P, = % 22:1 0x, denotes the empirical measure, and we have

t
] an =4 3 g0

Theorem: Let (X;);2, be a sequence of exchangeable random variables. Then, for any
bounded and measurable function f, ([ fdP;) is a reverse martingale with respect to
(&:). The converse holds true if (X;) is stationary (Bladt 2019, Kallenberg 2005).

We say that (FP;)s2; is a measure-valued reverse martingale.
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A different perspective

If we believe (&) is the smallest filtration with respect to which (F;) is a measure-valued
reverse martingale, then we should heuristically have:

gt:O'(Pt,Pt+1,...), t:1,2,

v

If we know P;, then we know Xy, ..., X; up to their ordering.

v

If we know both P,y and P;, then we know X;1.

v

Altogether, & tells us the whole sequence (X;)§2,, except for the ordering of
X1, X¢

This is exactly the content of the exchangeable filtration!

v



The Hewitt-Savage 0-1 Law

Theorem: Assume (X;)?2; is a sequence of i.i.d. random variables. Then, the
exchangeable o-algebra
o0
£ =[)&
t=1

only contains events of probability zero or one.



Confidence Sequences for the One-Sample
Problem
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Recall the one-sample problem

Given:
» Observations (X;);2; i.i.d. from an unknown distribution P,
» Empirical measure: P, = (1/t)Y'_, dx,,
» A general functional ®. For instance, ®(P) = D(P||Q) for a fixed distribution @
and a divergence D.
Goal: Derive (£;) and (u;) such that

P(3t>1:B(P) —f < ®(P) < B(P) +u) > 1 — a.

(¢;) and (uy) will be obtained through separate approaches. We begin by deriving (¢;).
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Main idea

» (P,) is a reverse measure-valued martingale.

» Question: In analogy to real-valued martingales, what is the “minimal” condition
one can place on ® to ensure that ®(F;) also has a martingale-type property?

» Answer: Convexity.
Definition. The functional @ is said to be convex if for all A € [0,1], and all probability

distributions wu, v,
A+ (1—=ANv) < A®(u) + (1 — XN)P(v).
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Heuristic Proof. Need to show: E[®(P;)|E41] > P(Pit1).




Convex functionals evaluated at the empirical measure
are reverse submartingales

Theorem. If ® is convex, and ®(FP;) has a finite first moment for all ¢ > 1, then (®(F;))
is a reverse submartingale with respect to the exchangeable filtration (&) generated by
(X¢).

Heuristic Proof. Need to show: E[®(P;)|E41] > ®(Pi41). Apply Jensen’s inequality to
(Pt)7

E[®(P)|Erv1] > P (E[P;|E11])



Convex functionals evaluated at the empirical measure
are reverse submartingales

Theorem. If ® is convex, and ®(FP;) has a finite first moment for all ¢ > 1, then (®(F;))
is a reverse submartingale with respect to the exchangeable filtration (&) generated by
(X¢).

Heuristic Proof. Need to show: E[®(P;)|E41] > ®(Pi41). Apply Jensen’s inequality to
(Pt)7

E[®(F)|E41] > @ (E[P|Er41]) = @(Prsr),

because (P;) is a reverse martingale.
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Convex functionals evaluated at the empirical measure
are reverse submartingales

Theorem. If ® is convex, and ®(FP;) has a finite first moment for all ¢ > 1, then (®(F;))
is a reverse submartingale with respect to the exchangeable filtration (&) generated by
(X¢).

Proper Proof (Sketch). Need to show: E[®(F;)|E+1] > ®(Piy1). Form the following
“leave-one-out” decomposition:

X1,X0, X5, 000, X1, Xy, Xya1y - -
—~

t+1

PE:% > ox

i=1,i#2



Convex functionals evaluated at the empirical measure
are reverse submartingales

Theorem. If ® is convex, and ®(FP;) has a finite first moment for all ¢ > 1, then (®(F;))
is a reverse submartingale with respect to the exchangeable filtration (&) generated by
(X¢).

Proper Proof (Sketch). Need to show: E[®(F;)|E+1] > ®(Piy1). Form the following
“leave-one-out” decomposition:

X17X27X37X47 L 7Xt—17Xt7Xt+17 L
——

t+1

1
P} = n Z dx,, etc.
i=1,i#3
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Convex functionals evaluated at the empirical measure
are reverse submartingales

Theorem. If ® is convex, and ®(FP;) has a finite first moment for all ¢ > 1, then (®(F;))
is a reverse submartingale with respect to the exchangeable filtration (&) generated by
(Xt).

Proper Proof (Sketch). Need to show: E[®(F;)|E+1] > ®(Piy1). Form the following
“leave-one-out” decomposition:

t+1 1 t+1
Py = t+1 ZPt ., where P} = S > ox,

i=1
: 1 t+1 k
By convexity, ®(Pii1) < 517 25 P(F)), thus,

t+1

B(Pr11) = BIO(P)|Eesa] < 3 D BIO(PF)[E0s].
k=1



Convex functionals evaluated at the empirical measure
are reverse submartingales

Theorem. If ® is convex, and ®(FP;) has a finite first moment for all ¢ > 1, then (®(F;))

is a reverse submartingale with respect to the exchangeable filtration (&) generated by
(X¢).

Proof Sketch. Need to show: E[®(F;)|E11] > P(Pit1). Have:

1
E[®(PF)|Ex41].
1
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1
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Convex functionals evaluated at the empirical measure
are reverse submartingales

Theorem. If ® is convex, and ®(FP;) has a finite first moment for all ¢ > 1, then (®(F;))
is a reverse submartingale with respect to the exchangeable filtration (&) generated by
(X¢).

Proof Sketch. Need to show: E[®(F;)|E11] > P(Pit1). Have:

1
E[®(PF)|Ex41].
1

T

1

— < -
Q(Pry1) = E[@(Pry1)|E41] < P

i

Now, similarly as for means,
E[®(PF)|E11] = E[®(P)|Erya], k=1,...,t+1,

so we are done. OJ
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Some immediate consequences
» For any convex functional, the sequence

(E[(I)(Pt)])zl

is decreasing.

» As soon as ®(P,) is a consistent estimator of ®(P), we obtain (assuming enough
moments):

E[®(R)] = E[®(P)].
Thus, plug-in estimators of convex functionals are upward biased.

» Suppose ®(P,) 2 ®(P) as t — co. Then, ®(F;) 3 &(P).
Proof.
» By the reverse submartingale convergence theorem, ®(P;) — Y for some
E-measurable Y.
» By Hewitt-Savage, Y is constant (a.s.).
» Convergence in probability must imply that Y = ®(P) a.s.
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Lower confidence sequences for ®(P)

» ¢(P;) is not a nonnegative reverse submartingale, so we can’t use Ville’s.

» If we think of ®(F;) as a mean, it is natural to instead work with exp(®(FP;)).
Assume N; := ®(P;) — ®(P) has a finite MGF with a known upper bound:

E [eXp()‘Nt)] < exp(¢t(A))7 AE [0, )\max)'

Then, for any A,
Lt(>\) = exp()\Nt), t= ]., 2, Ce

is also reverse submartingale with respect to (&).



Lower confidence sequences via the Chernoff method
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Lower confidence sequences via the Chernoff method

P(Ft>1:N,>u) =P (3t >1:exp(ANy) > exp(Au))
< E[exp(AN7)]

exp(Au)
< exp(—Au+P1(A)).

This held for any A € [0, Apax), thus,

, By Ville’s inequality
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Stitched time-uniform Chernoff bounds

Theorem. Under the aforementioned moment assumption,
P{Vt >1:B(P) > ®(P) — (4],) " (log £(logy 1) + 1og(1/a))} >1-a

Example: /t®(P;) is 1-sub-Gaussian, and if £(k) < k2,

loglogt + log(1/c)
t )

O(P) — ®(P) > —E[®(P) — ®(P)] — C\/ with high probability,

where ¢ > 0 is a small constant depending on #.

Fixed-Time Chernoff Analogue:

]P’{Vt >1:0(P) > (P, — (¢;)—1(1og(1/a))} >1-a
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» Let Fy(z) =1 S_ I(X; < z) be the empirical CDF.
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Let ®(Q) = [|[F' = Glloc = supyeg [F(2) — G(x)| where
» Fis a fixed CDF
> G is the CDF of Q
» Let Fy(z) =1 S_ I(X; < z) be the empirical CDF.
The celebrated Dvoretzky-Kiefer-Wolfowitz (DKW) inequality states:

log (2
IP<||Ft—F||OO§ Og(%/o‘)> >1-a.

A slight modification of the previous bound leads to:

L. 1.21oglogt + log(4.5/0
P(Vtzg:uFt—Fuoogwt9+2.2\/ 08 08 :Og( 5/)>21—a.




Example 1: The Kolmogorov-Smirnov Statistic

0
0.8 S
g~
%
T 0.61 £
g R —21
= s
£ 04 =
m :::; —3
0.2 @
—
— 44
0.0

0 2000 4000 6000 8000 10000 4 6 7 8 9
t loe(t)

[

Where c¢; is the critical value: P(||F; — F||, > ¢;) Saor P(It > 1:||F; - F| > ¢) < a.
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Example 2: The discrete Kullback-Leibler Divergence

Assume P = Z§:1 p;jda, is supported on a finite set X = {a1,...,ax} of size k. Let,
C; = P({a;}) = ZI(Xi =a;), sothat (C1,...,Ck) ~ Multinomial(t;p1,...,pk).
The MLE of (p1,...,pg) is (p1,...,0¢) = (C1/t,...,Ck/t), and
L(|1P) = Zp] g (22) = 10x (75

is precisely the generalized log-likelihood ratio statistic up to rescaling! Thus:

d
2KL(P[|P) == Xi_1-
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Confidence Sequences via Stitching
with Reverse Martingales

Confidence Sequences via Betting
(Method of mixtures, etc.)

1. Construct a single process ®(F;),
which is always a reverse submartingale.

2. Use Ville’s inequality and the Cher-
noff method to obtain sets C}, such that

P(vt > 2% . C)>1-——2%
(vt > po € Cy) > 0t

3. A confidence sequence for pg is then:

Cy = Cy, where t € [2F,2F+1),

1. Construct infinitely-many nonneg.
processes (M;(p)), indexed by p € R,
s.t. only (M;(up)) is a supermartingale.
e.g.: Take My (1) = iy (1N (Xi—p)).

2. By Ville’s inequality,

P(¥t > 1: My(po) < 1/a) > 1 - a.

3. A confidence sequence for pg is then:

Cr={ne0,1] : My(p) < 1/aj.



Upper confidence sequences

We have found (¢;) such that:
Vi>1: —L(t) < P(P)— P(P), with high probability.
Can we use the same strategy to find (u;) such that

Vi>1: &O(P)—®(F) <w, with high probability?
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Upper confidence sequences via affine minorants

f(x) = sup {)\x — f*(/\)} = f*(x).

AER

With some care, the same holds true for convex functionals.

» We say a functional L is linear if L(AP 4+ Q) = AL(P) + L(Q) for all A € R and all
distributions P, Q.

Heuristically, we thus expect:

Assume Lg achieves the supremum. Then,

O(F) —@(P) > {Lo(Pt) - ‘I)*(Lo)} - {LO(P) - @*(LO)} = Lo(P) — Lo(P)
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Upper confidence sequences via affine minorants

©(P) — ©(P) = {Lo(P) = *(Lo) } = { Lo(P) = *(Lo) } = Lo(P) = Lo(P)

Ly is linear, thus
t

Lo(P;) = Lo (125)() = %ZLO(%@-)-
i=1

i=1

This is a sample average, hence a reverse martingale! Thus:

(P, — EZ [Lo(x,) — Lo(P)].
=1

~~

In many well-known cases, the summand has mean zero. A high probability bound
follows.
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D*(P|Q) = Ex xinp[K (X, X")] + By yrnq [K(Y,Y")] - Ex~p[K(X,Y)].

We obtain,
P(vt >1: -4, < D(P||Q) — D(P||Q) <uy) >1—a.

B 2B
b = 4\/15 [1.210glogt + log(Q/Q)} +24/ o

B
up = 2\/15 [1.2log logt + lOg(Q/OJ)} :

where,

» Can the bias term be removed?
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Let h: R4 x R — R be a symmetric function. Set

®(P) =FE[h(X,X")], where X, X’ ~ P are independent.

» Canonical example: ®(P) = Var(X) when h(z,y) = (v — y)?/2.
V-Statistic Estimator: ®(F;) = t% ZE,J’:I h(Xi, X;) is called a V-Statistic.
Proposition. If h is a reproducing kernel, then v/®, and hence also ®, are convex
functionals. In particular, (®(P;)) and (1/®(P;)) are reverse submartingales with respect
to (515)

» Confidence sequences can thus be derived for ®(P) based on ®(F;).

» @ is convex, so ®(P;) is upwards biased. It turns out that our methods extend to
the unbiased U-Statistic estimator or ®(P).
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Further Examples: V-Statistics and U-Statistics

Let h: R4 x R — R be a symmetric function. Set

®(P) =FE[h(X,X")], where X, X’ ~ P are independent.

Unbiased (U-Statistic) estimator of ®(P):

Proposition. (U;);2; is a reverse martingale with respect to (&:)§2;.

» This fact was established by Berk (1966) with respect to a distinct filtration.

» Our past approach for lower confidence sequences can now be adapted to obtain
both lower and upper confidence sequences based on Uy.
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Further Examples: V-Statistics and U-Statistics
Proposition. (U;);2; is a reverse martingale with respect to (&)52;.

Proof Sketch. Either proceed as before, or note that:

2
U =E[U|&] =

> Eh(x.X))lE).

t(t—1) 1<i<j<t

By symmetry,
E[n(Xy1, X2)|&] = E[h(Xi, X;)[&], Vi #j.

Therefore,
U = Elh(X1, X2)|&.

whence,

E[Ui|Erv1] = E{E[R(X1, X2)|E |11} = E[M(X1, X2)|Er1] = Upyr.
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(®(F)
(®(F)

But (®(FP,)) is also adapted to the canonical forward filtration,

) is a reverse submartingale with respect to (&).
)

is also lower-bounded by a reverse martingale with respect to (&).

v

Dt:O'(Xl,...,Xt), t:1,2,

v

(&) was a useful design tool, but we will ultimately do statistical inference with
respect (Dy). e.g.:

P(®(P) e C;) >1—a, for any stopping time 7 with respect to (D;).
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Suppose we wish to test whether (X;) and (Y;) have the same mean. Start by testing if (X;) has
mean pg and (Y;) has mean p;. Assume X;,Y; € [0, 1].

Protocol: Testing two means uq, 1.

ICO - 1 n n
for n=1,2,... do T(n) = 1—-1I; S(n) = I;.
Skeptic announces ) j:l( ) ) ]; ’
(4) 1 1|
Realities announce I, € {0,1}. ) 0) )
i1, =0 then Bet at time n: (1 — In)Ap(,) + InAg(y)-
/\((2 y = — )\
n . i (1 — .
Reality 0 announces XT(n) Obs. at time n: ( In)XT(n) - InYS(n)
Kn=Kn1(1+ Afﬁg,,,) (X7(n) — 1)) Two-Sample Capital Process:
else
)\(1) _ )\(1)
S(n) - 1-1
Reality 1 announces Yy, H { T(J) (X7(j) — to))
_ 1) = I;
K = K1 (14 Ay Vs = 1)) (1 Ay (Vs — )
end

end
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The two-sample capital process

f[ (1 + )\ Xr(j) — uo)>1 b (1 + /\g()j)(YS(J) ))Ij

» If (I,,) is a deterministic sequence, then K, is a nonnegative martingale w.r.t.:

Dy = O‘(Zl, Zoy ... ), where Z,, = (1 — In)XT(n) + InYS(n)

v

The same holds true if (I,,) is predictable (with some care about the filtration).
We deduce P(3n > 1: C), (po, p11) > 1/a) < «v, thus

Cn = {(po, p1) : Konpo, 1) < 1/}

is a 1 — o confidence sequence for (Ep[X],Eq[Y]).

v

» I (3p: (u,p) € Cp) is a sequential 1 — « test for Hy : g = p1.



Generalization to convex functionals

Let ¥ be a bivariate convex functional. If (I,,) is deterministic,
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Generalization to convex functionals

Let ¥ be a bivariate convex functional. If (I,,) is deterministic,

o0

(Y(Pren), Qs(n)))ne1 18 a reverse submartingale w.r.t. exch. filtr. of (Zy)

)
n=1-

Similarly as before, we thus get [(p, up] s.t.:

P(Vn>1:—Ll, <U(P,Q) — ¥(PryllQsm) < un) >1—a.

» We conjecture this is also true if (I,,) depends on Zi,..., Z,_1, but not on the order
of Xl, ce 7XT(n) and Yl, ey YS(n)

» What if we want (I,,) to depend arbitrarily on the data? Including at time n?
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Mo 2w i
]CO = ]CO =1 ,Cts _ H(l + )\go)(Xt _ /.LO))
for t=1,2,... do 1 s
© AT A - )
Skeptic 0 announces A\, € [1:1 ,i} s s —H1))
Mo’ o j=1

Reality 0 announces X;

1O _ j(0) 1+)\(0) X, —
t t—l( e (Xe HO)) > (IC?) and (KC!) are martingales, so

end s
for s=1,2,... do IP)(EItzl:lCt(O)ZIC(()O)/a)Sa.
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Again, consider testing if (X;) has mean o and (Y;) has mean p;.

Protocol: Separately testing two means.

IC?:2
Ky = K5 =1
for t=1,2,... do

Skeptic 0 announces )\go) € [1:;0, i

Reality 0 announces X;
0 0 0
KO = 1+ 20 (X, — o))
end
for s=1,2,... do

Skeptic 1 announces )\gl) € [ -1 1

T—p1? p1

Reality 1 announces X;
KM =k 10+ 20 (v, = )
end

|

|

Capital at times (t,s): K = IC,gO) + ngl)

The Partially-Ordered Capital Process:

t
Kis = H(l + Aﬁo) (X — ,UO))
T+ - m)).

Jj=1

» (K9) and (K!) are martingales, so

PEt>1: K" > kP /a) < o
PEs>1: KM > KM /a) < a.
hence,

P(3t,s > 1: K5 > Koo/ar) < 2.
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Partially-ordered processes become more important for functionals other than means.
Two approaches:

» n-Uniform Confidence Sequence. Assume the ordering 7'(n) and S(n) are
known, or data-independent. Then, can obtain ¢,, u, such that:

P(Vn >1:—£, <V(P,Q) — Y(Prep), Qsm)) < un) > 1—a.

» (t,s)-Uniform Confidence Sequence. Assume the data comes in any
data-dependent order. Then, we would like to find £;5 and wuss such that

P(Vt,s >1: 4l < \II(P7Q) - ‘ll(PtaQs) < uts) >1-a.

We will need partially-ordered martingales to handle the latter.
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Partially-ordered reverse filtrations and martingales

A partially-ordered reverse filtration is a sequence (Fis)f%—1 of o-algebras which is
decreasing with respect to the partial order on N2, i.e.:

ftsgf(l%kl)sv Ftsgft(squ)a t,S = 1727 v

A partially-ordered reverse martingale with respect to (Fs)i2; is a process (Mis)7%—;
such that:

> M, € Fis for all t,s > 1.
» We have,

E[Z\/Its|f(t+l)s] - ]\[(t—&-l)sv E[AJtS|Ft(S+l)] = Ajt(s—‘,—l)7 t7 s = Oa 17 ceee

Replace by < for supermartingales and > for submartingales.
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Ville’s Inequality does not hold for partially-ordered
martingales

Thoerem (Cairoli, 1970). There exists a forward martingale (M;s) and v > 0 such that

E[M,
P(3t,s > 0: My > u) > [Moo]
u

Some Intuition. Recall our earlier example: K5 = ICEO) + ICgl). Then, for all v > 0,

0 (1)
PE 1 k0 >0 < PR g BEse 1K) ) < R0

u u

hence,
2E[Koo

P(3t,s>1: K > u) <
u
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Analogues of Ville’s Inequality nevertheless hold

Definition (Cairoli and Walsh, 1970). (F;s) is said to be conditionally independent if
Frs U Fs | Fis, VE<T,s<S.
Intuition. Let (M;s) be a partially ordered forward reverse martingale. By definition,
E[Mrs|Fis| = E[Ms| Fis).
Under conditional independence, one further has:

E[Mrs|Fis| = E[Mys| Fis).
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Analogues of Ville’s Inequality nevertheless hold

Theorem (Follows from Christofides and Serfling, 1990). Let (M) be a partially ordered
forward reverse martingale with respect to a conditionally independent filtration (Fis).
Assume M;; admits k > 1 moments. Then,

kO "E[ME)
kE—1 uk

P(Ht,le:Mt52u)§<

Main Proof Idea. The following bound holds by Markov but is not useful:

1 ,
P(3t,s>1: Mys>u)="P (maxMts > u) < —E <maXMtks> .

t,s>1 u t,s>1

Instead, use conditional independence to show

u

1
P(3t,s > 1: My > u) < —E (I?glx ]\/[Zf)> .



Analogues of Ville’s Inequality nevertheless hold

Theorem (Follows from Christofides and Serfling, 1990). Let (M) be a partially ordered
forward reverse martingale with respect to a conditionally independent filtration (Fis).
Assume M;; admits k > 1 moments. Then,

kO "E[ME)
kE—1 uk

P(Ht,SZIMtSZ’LL)§<

Proposition. If ¥ is convex, then (¥ (P, Qs))7%—; is a partially-ordered reverse
submartingale with respect to the filtration

G =&\ E) =0(&80E), ts=12,...,

where (£7X) and (£Y) are the exchangeable filtrations generated by (X;) and (Y5)
respectively. Furthermore, (&) is conditionally independent.



Application to convex divergences

Assume ¥ is convex and

E[exp (M¥(P, Qs) — ¥(P,Q)))] < exp(vhus(N)),

» Known Ordering. Assume the orderings T'(n) and S(n) are known and recall that
> peq 1/0(k) = 1. Then,
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Application to convex divergences

Assume ¥ is convex and

E[exp (M¥(P, Qs) — ¥(P,Q)))] < exp(vhus(N)),

» Known Ordering. Assume the orderings T'(n) and S(n) are known and recall that
> peq 1/0(k) = 1. Then,
P{3n > 1: W(Pr(uy, Qsin) = U(P, Q) + (Y5 ) s(my/2)~* (log Ullogy m) +log(1/8)) } < a
» Partial Ordering. : Assume now that

P {E!t,s >1:9(P,Qs) > Y(P,Q)+ (zbf/Q’S/Q)*l(logg(loth + log, s) + 10g(1/5)>} < a.



Example: Maximum Mean Discrepancy, again

» Known Ordering. Assume the orderings 7'(n) and S(n) are known or depend only
on external randomization. Then,

P(¥n > 1: £y < D(P||Q) = D(Prin|Qs(m) < 1) = 1 - a
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Example: Maximum Mean Discrepancy, again

» Known Ordering. Assume the orderings 7'(n) and S(n) are known or depend only
on external randomization. Then,

P(¥n > 1: £y < D(P||Q) = D(Prin|Qs(m) < 1) = 1 - a

B 2B B
by, = 4\/n [1.2loglogn + 10g(9/a)] + 24/ o Un= 2\/n {1.210glogn +log(9/a)|.

» Partial Ordering. Instead,
P(Vt,s > 1:4s < D(P||Q) — D(Ph]|Q) < ws) > 1— .

Bts 1 1
ls = 4\/t+s [2.210g(10gt +logs) + log(15/5)} +2Vv2B <\/£ + \/g)

B B
Ups = 2\/t [1.210g logt + log(18/oz)} + 2\/5 [1.2 loglog s + log(lS/a)] .
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Summary

» Reverse martingales can be useful tools for sequential inference.

» Forward and reverse martingales share many similar properties, but the latter arise
more naturally from symmetry arguments.

» Filtrations are not nuisances—they are design tools.

» Partially-ordered martingales are sometimes useful for sequential inference, but
have some technical challenges.

» Let us know if you have a betting interpretation of reverse martingales. :)
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