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t : P(∃t ≥ 1 : φµ0

t = 1) ≤ α, under H0.

I (1− α)-Confidence Sequence: P(∀t ≥ 1 : µ ∈ Ct) ≥ 1− α.

I Duality: Given a sequential test (φµ0
t ) for all µ0,

Ct = {µ0 : φµ0
t = 0} is a (1− α)-confidence sequence,

and, given a confidence sequence (Ct),

φµ0
t = I(µ0 6∈ Ct) is a level-α sequential test for H0.



A natural generalization

I One-Sample Problem. Given observations (Xt)
∞
t=1 from a distribution P , and a

known distribution Q,
H0 : P = Q, H1 : P 6= Q.

Let D be a divergence, i.e. D(P‖Q) = 0 if P = Q. Suppose (Ct)
∞
t=1 is such that

P(∀t ≥ 1 : D(P‖Q) ∈ Ct) ≥ 1− α.

Then,
φQt = I(0 6∈ Ct) is a level-α sequential test for H0.
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∞
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Derive (Cts)
∞
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Some examples which we can sometimes handle
I Total Variation Distance:

D(P‖Q) = sup
B

|P (B)−Q(B)|.

I Kullback-Leibler Divergence:
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∫
log
(
dP
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dP.

I χ2-Divergence:
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∫ (
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)2

dQ.

These are all special cases of so-called ϕ-divergences: For a convex function ϕ,
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∫
ϕ

(
dP

dQ

)
dQ.



Some examples which we can sometimes handle
I Total Variation Distance:

D(P‖Q) = sup
B

|P (B)−Q(B)|.

I Kullback-Leibler Divergence:

D(P‖Q) =

∫
log
(
dP

dQ

)
dP.

I χ2-Divergence:

D(P‖Q) =

∫ (
dP

dQ
− 1

)2

dQ.

These are all special cases of so-called ϕ-divergences: For a convex function ϕ,

D(P‖Q) =

∫
ϕ

(
dP

dQ

)
dQ.



Some examples which we can sometimes handle
I Total Variation Distance:

D(P‖Q) = sup
B

|P (B)−Q(B)|.

I Kullback-Leibler Divergence:

D(P‖Q) =

∫
log
(
dP

dQ

)
dP.

I χ2-Divergence:

D(P‖Q) =

∫ (
dP

dQ
− 1

)2

dQ.

These are all special cases of so-called ϕ-divergences: For a convex function ϕ,

D(P‖Q) =

∫
ϕ

(
dP

dQ

)
dQ.



Some examples which we can sometimes handle
I Total Variation Distance:

D(P‖Q) = sup
B

|P (B)−Q(B)|.

I Kullback-Leibler Divergence:

D(P‖Q) =

∫
log
(
dP

dQ

)
dP.

I χ2-Divergence:

D(P‖Q) =

∫ (
dP

dQ
− 1

)2

dQ.

These are all special cases of so-called ϕ-divergences: For a convex function ϕ,

D(P‖Q) =

∫
ϕ

(
dP

dQ

)
dQ.



In hindsight, the same tools can be used for certain

functionals which are not divergences

Confidence sequence (Ct) for a functional Φ:

P(∀t ≥ 1 : Φ(P ) ∈ Ct) ≥ 1− α.

I Multilinear Functionals: For a given nonnegative function h,

Φ(P ) = EX,X′∼P [h(X,X
′)].

I Conditional Value-at-Risk: If P is univariate, with quantile function F−1,

Φ(P ) = CVaR(P ) =
1

δ

∫ δ

0
F−1(u)du = EP [X|X ≤ F−1(δ)],

where δ ∈ (0, 1) and the second equality holds if P is continuous.
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General approach

Given observations (Xt)
∞
t=1 from P and (Ys)

∞
s=1 from Q, define the empirical

distributions

Pt =
1

t

t∑
i=1

δXi , Qs =
1

s

s∑
j=1

δYj .

I One-Sample Problem. Show that D(Pt‖Q) admits a martingale structure, and
derive

P(∀t ≥ 1 : −`t ≤ D(P‖Q)−D(Pt‖Q) ≤ ut) ≥ 1− α.

I Two-Sample Problem. Show that D(Pt‖Qs) admits a partially ordered
martingale structure, and derive

P(∀t, s ≥ 1 : −`ts ≤ D(P‖Q)−D(Pt‖Qs) ≤ uts) ≥ 1− α.
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Forward filtrations
A forward filtration is an increasing sequence (Ft)

∞
t=0 of σ-algebras:

F0 ⊆ F1 ⊆ . . .

I Ft is intuitively the set of events that could have happened until time t.
I Think of Ft as the information known at time t.
I Canonical filtration:

C0 = {∅,Ω}, Ct = σ(X1, . . . , Xt).

Ct is the smallest σ-algebra containing all events of the form {Xi ∈ B}, i = 1, . . . , t.

The conditional expectation of an RV Y given Ft is denoted E[Y |Ft].

E[Y |Ft] is our best guess of Y given the information contained in Ft.

For instance, E[Y |Ct] = E[Y |X1, . . . , Xt] in the usual sense.
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Forward martingales

A forward martingale with respect to a filtration (Ft)
∞
t=0 is a process (St)

∞
t=0 such

that:
1. St is Ft-measurable: “St is constructed based only on information in Ft”.

2. We have,
E[St+1|Ft] = St, t = 0, 1, . . .
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Forward martingales

A forward martingale with respect to a filtration (Ft)
∞
t=0 is a process (St)

∞
t=0 such

that:
1. St is Ft-measurable: “St is constructed based only on information in Ft”.
2. We have,

E[St+1|Ft] = St, t = 0, 1, . . .

Similarly,
I Forward supermartingale: E[St+1|Ft] ≤ St (“decreasing with time”).
I Forward submartingale: E[St+1|Ft] ≥ St (“increasing with time”).



Two key characterizations of martingales

Let (Xt) satisfy E[Xt+1|Ft] = 0.

I Sums: St =
∑t

i=1Xi is a martingale.

I Nonnegative Products: Lt =
∏t

i=1(1 +Xi) is a nonneg. martingale if Xt ≥ −1.
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∏t
i=1(1 + Yi).

Proof. Take Yt =
Lt

Lt−1
= 1 +

Lt − Lt−1

Lt−1︸ ︷︷ ︸
Xt

. (0/0:=1)



Two key characterizations of martingales

Let (Xt) satisfy E[Xt+1|Ft] = 0.
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∏t
i=1(1 + Yi).

We have seen similar characterizations for:
I Capital Processes:

∏t
i=1(1 + λiXi) with (λt) predictable, i.e. λt is Ft−1-measurable.

I Likelihood Ratios:
∏t

i=1 q(Xi)/p(Xi).
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I Nonnegative Products: Lt =
∏t
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More generally,
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Reverse martingales

A reverse filtration is a decreasing sequence (Rt)
∞
t=1 of σ-algebras:

R1 ⊇ R2 ⊇ . . .

A reverse martingale with respect to (Rt)
∞
t=1 is a process (Mt)

∞
t=1 such that:

1. Mt is Rt-measurable for all t ≥ 1.
2. We have,

E[Mt|Rt+1] =Mt+1, t = 1, 2 . . . .

(Compare to E[St|Ft−1] = St−1 for forward martingales.)
Furthermore,

I Reverse supermartingale: E[Mt|Rt+1] ≤Mt+1 (compare to E[St|Ft−1] ≤ St−1).
I Reverse submartingale: E[Mt|Rt+1] ≥Mt+1 (compare to E[St|Ft−1] ≥ St−1).



Reverse martingales

A reverse filtration is a decreasing sequence (Rt)
∞
t=1 of σ-algebras:

R1 ⊇ R2 ⊇ . . .

A reverse martingale with respect to (Rt)
∞
t=1 is a process (Mt)

∞
t=1 such that:

1. Mt is Rt-measurable for all t ≥ 1.

2. We have,
E[Mt|Rt+1] =Mt+1, t = 1, 2 . . . .

(Compare to E[St|Ft−1] = St−1 for forward martingales.)
Furthermore,

I Reverse supermartingale: E[Mt|Rt+1] ≤Mt+1 (compare to E[St|Ft−1] ≤ St−1).
I Reverse submartingale: E[Mt|Rt+1] ≥Mt+1 (compare to E[St|Ft−1] ≥ St−1).



Reverse martingales

A reverse filtration is a decreasing sequence (Rt)
∞
t=1 of σ-algebras:

R1 ⊇ R2 ⊇ . . .

A reverse martingale with respect to (Rt)
∞
t=1 is a process (Mt)

∞
t=1 such that:

1. Mt is Rt-measurable for all t ≥ 1.
2. We have,

E[Mt|Rt+1] =Mt+1, t = 1, 2 . . . .

(Compare to E[St|Ft−1] = St−1 for forward martingales.)

Furthermore,
I Reverse supermartingale: E[Mt|Rt+1] ≤Mt+1 (compare to E[St|Ft−1] ≤ St−1).
I Reverse submartingale: E[Mt|Rt+1] ≥Mt+1 (compare to E[St|Ft−1] ≥ St−1).



Reverse martingales

A reverse filtration is a decreasing sequence (Rt)
∞
t=1 of σ-algebras:

R1 ⊇ R2 ⊇ . . .

A reverse martingale with respect to (Rt)
∞
t=1 is a process (Mt)

∞
t=1 such that:

1. Mt is Rt-measurable for all t ≥ 1.
2. We have,

E[Mt|Rt+1] =Mt+1, t = 1, 2 . . . .

(Compare to E[St|Ft−1] = St−1 for forward martingales.)
Furthermore,

I Reverse supermartingale: E[Mt|Rt+1] ≤Mt+1 (compare to E[St|Ft−1] ≤ St−1).
I Reverse submartingale: E[Mt|Rt+1] ≥Mt+1 (compare to E[St|Ft−1] ≥ St−1).



Sample averages are reverse martingales

Claim. If (Xt)
∞
t=1 is a sequence of i.i.d. random variables, then Mt =

1
t

∑t
i=1Xi is a

reverse martingale.

Before proving this, let us try to guess the relevant reverse filtration.

Remark. If (Mt) is a reverse martingale w.r.t. (Gt), then it is also a reverse martingale
w.r.t.

Rt = σ(Mt,Mt+1, . . . ), t = 1, 2, . . .
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∣∣Rt+1

]
= E[Mt+1|Rt+1] =Mt+1.
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General (Sub, Super)Martingales
Canonical Representation Maximal Inequalities

Frwrd Supermart.
X0 +

∑t
i=1Xi

Xi ∈ Fi
,
E[Xi|Fi−1] ≤ 0
E[Xi|Fi−1] = 0
E[Xi|Fi−1] ≥ 0

Frwrd Mart.
Frwrd Submart.
Rev Supermart.

1
t

∑t
i=1Xi,

?
E[Xi|Rt+1] =Mt+1

?
Rev Mart.

Rev Submart.

Nonnegative (Sub, Super)Martingales
Frwrd Supermart.

X0

∏t
i=1(1 +Xi)

Xi ∈ Fi, Xi ≥ −1
,
E[Xi|Fi−1] ≤ 0
E[Xi|Fi−1] = 0
E[Xi|Fi−1] ≥ 0

Frwrd Mart.
Frwrd Submart.
Rev Supermart.

Rev Mart. ?
Rev Submart.



Nonnegative reverse martingales

We don’t have a canonical form for nonnegative reverse martingales, but we can mimick
one. e.g.: If Mt = (1/t)

∑t
i=1Xi,

exp(Mt) =

t∏
i=1

exp(Xi/t) is a reverse submartingale.

Indeed, if ϕ : R → R is a convex function, and (Mt) is a reverse martingale w.r.t. (Rt),
then (ϕ(Mt))

∞
t=1 is a reverse submartingale w.r.t. (Rt).

Proof. Follows from Jensen’s inequality:

E[ϕ(Mt)|Rt+1] ≥ ϕ(E[Mt|Rt+1]) = ϕ(Mt+1).
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Maximal Inequalities for Reverse Martingales



Recall the prominent maximal inequalities for forward

martingales

I Ville’s Inequality. If (Lt) is a nonnegative forward supermartingale,

P(∃t ≥ 1 : Lt ≥ u) ≤ E[L0]

u
, u > 0.

I Doob’s Submartingale Inequality. If (Lt) is a nonnegative forward
submartingale, then for all T ≥ 1,

P(∃t ≤ T : Lt ≥ u) ≤ E[LT ]

u
, u > 0.
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Ville's Inequality for Reverse Submartingales
Let (Mt) be a nonnegative reverse submartingale with respect to (Rt).

For T ≥ 1, set
Lt :=MT−t+1, Rt = FT−t+1, 1 ≤ t ≤ T.

Then, (Lt)
T
t=1 is a nonnegative forward submartingale with respect to (Rt)

T
t=1. By

Doob’s submartingale inequality,

P(∃t ≤ T : Lt ≥ u) ≤ E[LT ]

u
, u > 0.

This translates into
P(∃t ≤ T :Mt ≥ u) ≤ E[M1]

u
.

Taking T → ∞ leads to Ville’s inequality for reverse submartingales:

P(∃t ≥ 1 :Mt ≥ u) ≤ E[M1]
u , u > 0.
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Frwrd Mart.
Frwrd Submart.
Rev Supermart.

1
t

∑t
i=1Xi,

?
E[Xi|Rt+1] =Mt+1

?
Rev Mart.

Rev Submart.

Nonnegative (Sub, Super)Martingales
Frwrd Supermart.

X0

∏t
i=1(1 +Xi)

Xi ∈ Fi, Xi ≥ −1
,
E[Xi|Fi−1] ≤ 0
E[Xi|Fi−1] = 0
E[Xi|Fi−1] ≥ 0

P(∃t ≥ 0 : Lt ≥ u) ≤ E[L0]/u
Frwrd Mart.

Frwrd Submart. P(∃t ≤ T : Lt ≥ u) ≤ E[LT ]/u
Rev Supermart. P(∃t ≤ T :Mt ≥ u) ≤ E[MT ]/u

Rev Mart. ?
Rev Submart. Example:

∏
i exp(Xi/t) P(∃t ≥ 1 :Mt ≥ u) ≤ E[M1]/u



Measure-Valued Martingales and Exchangeable Filtrations



We know that if (Xt)
∞
t=1 is a sequence of exchangeable RVs, then

1

t

t∑
i=1

Xi is a rev. martingale w.r.t. σ

(
1

t

t∑
i=1

Xi, Xt+1, Xt+2, . . .

)
.

More generally, for any measurable function f ,

1

t

t∑
i=1

f(Xi) is a rev. martingale w.r.t. σ

(
1

t

t∑
i=1

f(Xi), f(Xt+1), f(Xt+2), . . .

)
.

Question: Does there exist a filtration (Et) such that for all f , 1
t

∑t
i=1 f(Xi) is a

reverse martingale with respect to (Et)?
Answer: All we need is to ensure E[Xi|Et] = E[Xj |Et] for all i, j = 1, . . . , t.
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Answer: All we need is to ensure E[Xi|Et] = E[Xj |Et] for all i, j = 1, . . . , t.



The Exchangeable Filtration

Given a sequence of random variables (Xt)
∞
t=1, the exchangeable filtration (Et)∞t=1 is

defined by

Et = σ

({
h(X1, X2, . . . , Xt) :

h is measurable and
permutation-symmetric

}
∪ {Xt+1, Xt+2, . . . }

)
.

Equivalently, Et is the set of events B whose indicator functions IB are functions of
(Xt)

∞
t=1,

IB = g(X1, X2, . . . )

such that
g(X1, X2, . . . ) = g(Xτ(1), Xτ(2), . . . , Xτ(t), Xt+1, Xt+2, . . . ),

for all permutations τ of {1, . . . , t}.
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The Exchangeable Filtration

Recall that Pt =
1
t

∑t
i=1 δXi denotes the empirical measure, and we have

∫
fdPt =

1

t

t∑
i=1

f(Xi).

Theorem: Let (Xt)
∞
t=1 be a sequence of exchangeable random variables. Then, for any

bounded and measurable function f , (
∫
fdPt) is a reverse martingale with respect to

(Et). The converse holds true if (Xt) is stationary (Bladt 2019, Kallenberg 2005).

We say that (Pt)
∞
t=1 is a measure-valued reverse martingale.
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A different perspective

If we believe (Et) is the smallest filtration with respect to which (Pt) is a measure-valued
reverse martingale, then we should heuristically have:

Et = σ(Pt, Pt+1, . . . ), t = 1, 2, . . .

I If we know Pt, then we know X1, . . . , Xt up to their ordering.
I If we know both Pt+1 and Pt, then we know Xt+1.
I Altogether, Et tells us the whole sequence (Xt)

∞
t=1, except for the ordering of

X1, . . . , Xt.
I This is exactly the content of the exchangeable filtration!
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The Hewitt-Savage 0-1 Law

Theorem: Assume (Xt)
∞
t=1 is a sequence of i.i.d. random variables. Then, the

exchangeable σ-algebra

E∞ =

∞⋂
t=1

Et

only contains events of probability zero or one.



Confidence Sequences for the One-Sample
Problem



Recall the one-sample problem

Given:
I Observations (Xt)

∞
t=1 i.i.d. from an unknown distribution P ,

I Empirical measure: Pt = (1/t)
∑t

i=1 δXi ,
I A general functional Φ. For instance, Φ(P ) = D(P‖Q) for a fixed distribution Q

and a divergence D.
Goal: Derive (`t) and (ut) such that

P(∃t ≥ 1 : Φ(Pt)− `t ≤ Φ(P ) ≤ Φ(Pt) + ut) ≥ 1− α.

(`t) and (ut) will be obtained through separate approaches. We begin by deriving (`t).



Recall the one-sample problem

Given:
I Observations (Xt)

∞
t=1 i.i.d. from an unknown distribution P ,

I Empirical measure: Pt = (1/t)
∑t

i=1 δXi ,
I A general functional Φ. For instance, Φ(P ) = D(P‖Q) for a fixed distribution Q

and a divergence D.
Goal: Derive (`t) and (ut) such that

P(∃t ≥ 1 : Φ(Pt)− `t ≤ Φ(P ) ≤ Φ(Pt) + ut) ≥ 1− α.

(`t) and (ut) will be obtained through separate approaches. We begin by deriving (`t).



Recall the one-sample problem

Given:
I Observations (Xt)

∞
t=1 i.i.d. from an unknown distribution P ,

I Empirical measure: Pt = (1/t)
∑t

i=1 δXi ,

I A general functional Φ. For instance, Φ(P ) = D(P‖Q) for a fixed distribution Q
and a divergence D.

Goal: Derive (`t) and (ut) such that

P(∃t ≥ 1 : Φ(Pt)− `t ≤ Φ(P ) ≤ Φ(Pt) + ut) ≥ 1− α.

(`t) and (ut) will be obtained through separate approaches. We begin by deriving (`t).



Recall the one-sample problem

Given:
I Observations (Xt)

∞
t=1 i.i.d. from an unknown distribution P ,

I Empirical measure: Pt = (1/t)
∑t

i=1 δXi ,
I A general functional Φ. For instance, Φ(P ) = D(P‖Q) for a fixed distribution Q

and a divergence D.

Goal: Derive (`t) and (ut) such that

P(∃t ≥ 1 : Φ(Pt)− `t ≤ Φ(P ) ≤ Φ(Pt) + ut) ≥ 1− α.

(`t) and (ut) will be obtained through separate approaches. We begin by deriving (`t).



Recall the one-sample problem

Given:
I Observations (Xt)

∞
t=1 i.i.d. from an unknown distribution P ,

I Empirical measure: Pt = (1/t)
∑t

i=1 δXi ,
I A general functional Φ. For instance, Φ(P ) = D(P‖Q) for a fixed distribution Q

and a divergence D.
Goal: Derive (`t) and (ut) such that

P(∃t ≥ 1 : Φ(Pt)− `t ≤ Φ(P ) ≤ Φ(Pt) + ut) ≥ 1− α.

(`t) and (ut) will be obtained through separate approaches. We begin by deriving (`t).



Recall the one-sample problem

Given:
I Observations (Xt)

∞
t=1 i.i.d. from an unknown distribution P ,

I Empirical measure: Pt = (1/t)
∑t

i=1 δXi ,
I A general functional Φ. For instance, Φ(P ) = D(P‖Q) for a fixed distribution Q

and a divergence D.
Goal: Derive (`t) and (ut) such that

P(∃t ≥ 1 : Φ(Pt)− `t ≤ Φ(P ) ≤ Φ(Pt) + ut) ≥ 1− α.

(`t) and (ut) will be obtained through separate approaches. We begin by deriving (`t).



Main idea

I (Pt) is a reverse measure-valued martingale.

I Question: In analogy to real-valued martingales, what is the “minimal” condition
one can place on Φ to ensure that Φ(Pt) also has a martingale-type property?

I Answer: Convexity.

Definition. The functional Φ is said to be convex if for all λ ∈ [0, 1], and all probability
distributions µ, ν,

Φ(λµ+ (1− λ)ν) ≤ λΦ(µ) + (1− λ)Φ(ν).
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Main idea
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I Question: In analogy to real-valued martingales, what is the “minimal” condition

one can place on Φ to ensure that Φ(Pt) also has a martingale-type property?
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Definition. The functional Φ is said to be convex if for all λ ∈ [0, 1], and all probability
distributions µ, ν,
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Convex functionals evaluated at the empirical measure

are reverse submartingales

Theorem. If Φ is convex, and Φ(Pt) has a finite first moment for all t ≥ 1, then (Φ(Pt))
is a reverse submartingale with respect to the exchangeable filtration (Et) generated by
(Xt).
Heuristic Proof. Need to show: E[Φ(Pt)|Et+1] ≥ Φ(Pt+1).

Apply Jensen’s inequality to
(Pt),

E[Φ(Pt)|Et+1] ≥ Φ
(
E[Pt|Et+1]

)
= Φ(Pt+1),

because (Pt) is a reverse martingale.



Convex functionals evaluated at the empirical measure

are reverse submartingales

Theorem. If Φ is convex, and Φ(Pt) has a finite first moment for all t ≥ 1, then (Φ(Pt))
is a reverse submartingale with respect to the exchangeable filtration (Et) generated by
(Xt).
Heuristic Proof. Need to show: E[Φ(Pt)|Et+1] ≥ Φ(Pt+1). Apply Jensen’s inequality to
(Pt),

E[Φ(Pt)|Et+1] ≥ Φ
(
E[Pt|Et+1]

)

= Φ(Pt+1),

because (Pt) is a reverse martingale.



Convex functionals evaluated at the empirical measure

are reverse submartingales

Theorem. If Φ is convex, and Φ(Pt) has a finite first moment for all t ≥ 1, then (Φ(Pt))
is a reverse submartingale with respect to the exchangeable filtration (Et) generated by
(Xt).
Heuristic Proof. Need to show: E[Φ(Pt)|Et+1] ≥ Φ(Pt+1). Apply Jensen’s inequality to
(Pt),

E[Φ(Pt)|Et+1] ≥ Φ
(
E[Pt|Et+1]

)
= Φ(Pt+1),

because (Pt) is a reverse martingale.



Convex functionals evaluated at the empirical measure

are reverse submartingales

Theorem. If Φ is convex, and Φ(Pt) has a finite first moment for all t ≥ 1, then (Φ(Pt))
is a reverse submartingale with respect to the exchangeable filtration (Et) generated by
(Xt).
Proper Proof (Sketch). Need to show: E[Φ(Pt)|Et+1] ≥ Φ(Pt+1).

Form the following
“leave-one-out” decomposition:

Pt+1 =
1

t+ 1

t+1∑
k=1

P k
t , where P k

t =
1

t

t+1∑
i=1
i6=k

δXi .

By convexity, Φ(Pt+1) ≤ 1
t+1

∑t+1
k=1Φ(P

k
t ), thus,

Φ(Pt+1) = E[Φ(Pt+1)|Et+1] ≤
1

t+ 1

t+1∑
k=1

E[Φ(P k
t )|Et+1].
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Theorem. If Φ is convex, and Φ(Pt) has a finite first moment for all t ≥ 1, then (Φ(Pt))
is a reverse submartingale with respect to the exchangeable filtration (Et) generated by
(Xt).
Proof Sketch. Need to show: E[Φ(Pt)|Et+1] ≥ Φ(Pt+1). Have:
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t )|Et+1] = E[Φ(Pt)|Et+1], k = 1, . . . , t+ 1,

so we are done.
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Some immediate consequences

I For any convex functional, the sequence(
E[Φ(Pt)]

)∞
t=1

is decreasing.

I As soon as Φ(Pt) is a consistent estimator of Φ(P ), we obtain (assuming enough
moments):

E[Φ(Pt)] ≥ E[Φ(P )].

Thus, plug-in estimators of convex functionals are upward biased.
I Suppose Φ(Pt)

p→ Φ(P ) as t→ ∞. Then, Φ(Pt)
a.s.→ Φ(P ).

Proof.
I By the reverse submartingale convergence theorem, Φ(Pt) → Y for some

E∞-measurable Y .
I By Hewitt-Savage, Y is constant (a.s.).
I Convergence in probability must imply that Y = Φ(P ) a.s.
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Lower confidence sequences for Φ(P )

I Φ(Pt) is not a nonnegative reverse submartingale, so we can’t use Ville’s.

I If we think of Φ(Pt) as a mean, it is natural to instead work with exp(Φ(Pt)).

Assume Nt := Φ(Pt)− Φ(P ) has a finite MGF with a known upper bound:

E [exp(λNt)] ≤ exp(ψt(λ)), λ ∈ [0, λmax).

Then, for any λ,
Lt(λ) = exp(λNt), t = 1, 2, . . .

is also reverse submartingale with respect to (Et).
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Lower confidence sequences via the Chernoff method

P(∃t ≥ 1 : Nt ≥ u) = P (∃t ≥ 1 : exp(λNt) ≥ exp(λu))

≤ E[exp(λN1)]

exp(λu)
, By Ville’s inequality

≤ exp(−λu+ ψ1(λ)).

This held for any λ ∈ [0, λmax), thus,

P(∃t ≥ 1 : Nt ≥ u) ≤ exp

(
− sup

λ∈[0,λmax)

{
λu− ψ1(λ)

})
= exp(−ψ∗

1(u)),

where ψ∗
t is the convex conjugate of ψt. Inverting, we get:

P
{
∃t ≥ 1 : Nt ≥ (ψ∗

1)
−1
(

log(1/α)
)}

≤ α.

But this confidence sequence has non-vanishing length!
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Stitched time-uniform Chernoff bounds
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Stitched time-uniform Chernoff bounds

20 21 22 23 24 25

0

α
`(1)

α
`(2)

α
`(3)

α
`(4)

α
`(5)

Φ(Pt)− Φ(P )

Ville Bound

P
{
∃t ≥ 2k : Nt ≥ (ψ2k

∗)−1
(

log(`(k + 1)/α)
)}

≤ α

`(k)
, `(k) ≥ 1,

∑∞
k=1

1
`(k) = 1.



Stitched time-uniform Chernoff bounds
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Stitched time-uniform Chernoff bounds

Theorem. Under the aforementioned moment assumption,

P
{
∀t ≥ 1 : Φ(P ) ≥ Φ(Pt)− (ψ∗

t/2)
−1
(

log `(log2 t) + log(1/α)
)}

≥ 1− α.

Example:
√
tΦ(Pt) is 1-sub-Gaussian, and if `(k) � k2,

Φ(P )− Φ(Pt) ≥− E[Φ(Pt)− Φ(P )]− c

√
log log t+ log(1/α)

t
, with high probability,

where c > 0 is a small constant depending on `.
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Fixed-Time Chernoff Analogue:

P
{
∀t ≥ 1 : Φ(P ) ≥ Φ(Pt)− (ψ∗
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log(1/α)
)}
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Example 1: The Kolmogorov-Smirnov Statistic

Let Φ(Q) = ‖F −G‖∞ = supx∈R |F (x)−G(x)| where
I F is a fixed CDF
I G is the CDF of Q
I Let Ft(x) =

1
t

∑t
i=1 I(Xi ≤ x) be the empirical CDF.

The celebrated Dvoretzky-Kiefer-Wolfowitz (DKW) inequality states:

P

(
‖Ft − F‖∞ ≤

√
log(2/α)

2t

)
≥ 1− α.

A slight modification of the previous bound leads to:

P

(
∀t ≥ 3 : ‖Ft − F‖∞ ≤

√
1.9

t
+ 2.2

√
1.2 log log t+ log(4.5/δ)

t

)
≥ 1− α.



Example 1: The Kolmogorov-Smirnov Statistic

Let Φ(Q) = ‖F −G‖∞ = supx∈R |F (x)−G(x)| where
I F is a fixed CDF
I G is the CDF of Q
I Let Ft(x) =

1
t

∑t
i=1 I(Xi ≤ x) be the empirical CDF.

The celebrated Dvoretzky-Kiefer-Wolfowitz (DKW) inequality states:

P

(
‖Ft − F‖∞ ≤

√
log(2/α)

2t

)
≥ 1− α.

A slight modification of the previous bound leads to:

P

(
∀t ≥ 3 : ‖Ft − F‖∞ ≤

√
1.9

t
+ 2.2

√
1.2 log log t+ log(4.5/δ)

t

)
≥ 1− α.



Example 1: The Kolmogorov-Smirnov Statistic

Let Φ(Q) = ‖F −G‖∞ = supx∈R |F (x)−G(x)| where
I F is a fixed CDF
I G is the CDF of Q
I Let Ft(x) =

1
t

∑t
i=1 I(Xi ≤ x) be the empirical CDF.

The celebrated Dvoretzky-Kiefer-Wolfowitz (DKW) inequality states:

P

(
‖Ft − F‖∞ ≤

√
log(2/α)

2t

)
≥ 1− α.

A slight modification of the previous bound leads to:

P

(
∀t ≥ 3 : ‖Ft − F‖∞ ≤

√
1.9

t
+ 2.2

√
1.2 log log t+ log(4.5/δ)

t

)
≥ 1− α.



Example 1: The Kolmogorov-Smirnov Statistic
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Where ct is the critical value: P(‖Ft − F‖∞ ≥ ct) ≤ α or P(∃t ≥ 1 : ‖Ft − F‖∞ ≥ ct) ≤ α.



Example 2: The discrete Kullback-Leibler Divergence

Assume P =
∑k

j=1 pjδaj is supported on a finite set X = {a1, . . . , ak} of size k.

Let,

Cj = Pt({aj}) =
t∑

i=1

I(Xi = aj), so that (C1, . . . , Ck) ∼ Multinomial(t; p1, . . . , pk).

The MLE of (p1, . . . , pk) is (p̂1, . . . , p̂t) = (C1/t, . . . , Ck/t), and

KL(Pt‖P ) =
k∑

j=1

p̂j log
(
p̂j
pj

)
=

1

t
log
(
Lt(p̂)

Lt(p)

)
is precisely the generalized log-likelihood ratio statistic up to rescaling! Thus:

2tKL(Pt‖P )
d−→ χ2

k−1.
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Consider the special case where Φ(P ) = EP [X] = µ0, and P is supported on [0, 1].

Confidence Sequences via Stitching
with Reverse Martingales

Confidence Sequences via Betting
(Method of mixtures, etc.)

1. Construct a single process Φ(Pt),
which is always a reverse submartingale.

1. Construct infinitely-many nonneg.
processes (Mt(µ)), indexed by µ ∈ R,
s.t. only (Mt(µ0)) is a supermartingale.
e.g.: Take Mt(µ) =

∏t
i=1(1+λi(Xi−µ)).

2. Use Ville’s inequality and the Cher-
noff method to obtain sets C̃k such that

P(∀t ≥ 2k : µ0 ∈ C̃k) ≥ 1− α

`(k + 1)
.

2. By Ville’s inequality,

P(∀t ≥ 1 :Mt(µ0) ≤ 1/α) ≥ 1− α.

3. A confidence sequence for µ0 is then:

Ct = C̃k, where t ∈ [2k, 2k+1).

3. A confidence sequence for µ0 is then:

Ct = {µ ∈ [0, 1] :Mt(µ) ≤ 1/α}.
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Upper confidence sequences

We have found (`t) such that:

∀t ≥ 1 : −`(t) ≤ Φ(P )− Φ(Pt), with high probability.

Can we use the same strategy to find (ut) such that

∀t ≥ 1 : Φ(P )− Φ(Pt) ≤ ut, with high probability?



Upper confidence sequences via affine minorants

Any convex function f admits an affine minorant.

In fact, under some conditions,

f(x) = sup
λ∈R

{
λx− f∗(λ)

}
= f∗∗(x).
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L0(δXi)− L0(P )

]
.

In many well-known cases, the summand has mean zero. A high probability bound
follows.
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Example: Maximum Mean Discrepancy

Given a reproducing kernel K bounded by B, recall:

D2(P‖Q) = EX,X′∼P [K(X,X ′)] + EY,Y ′∼Q

[
K(Y, Y ′)

]
− 2EX∼P

Y∼Q

[
K(X,Y )

]
.

We obtain,
P(∀t ≥ 1 : −`t ≤ D(P‖Q)−D(Pt‖Q) ≤ ut) ≥ 1− α.

where,

`t = 4

√
B

t

[
1.2 log log t+ log(9/α)

]
+2

√
2B

t

ut = 2

√
B

t

[
1.2 log log t+ log(9/α)

]
.

I Can the bias term be removed?
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Further Examples: V-Statistics and U-Statistics

Let h : Rd × Rd → R be a symmetric function. Set

Φ(P ) = E[h(X,X ′)], where X,X ′ ∼ P are independent.

I Canonical example: Φ(P ) = Var(X) when h(x, y) = (x− y)2/2.
V-Statistic Estimator: Φ(Pt) =

1
t2
∑t

i,j=1 h(Xi, Xj) is called a V-Statistic.

Proposition. If h is a reproducing kernel, then
√
Φ, and hence also Φ, are convex

functionals. In particular, (Φ(Pt)) and (
√

Φ(Pt)) are reverse submartingales with respect
to (Et).

I Confidence sequences can thus be derived for Φ(P ) based on Φ(Pt).
I Φ is convex, so Φ(Pt) is upwards biased. It turns out that our methods extend to

the unbiased U-Statistic estimator or Φ(P ).
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Further Examples: V-Statistics and U-Statistics

Let h : Rd × Rd → R be a symmetric function. Set

Φ(P ) = E[h(X,X ′)], where X,X ′ ∼ P are independent.

Unbiased (U-Statistic) estimator of Φ(P ):

Ut =
2

t(t− 1)

∑
1≤i<j≤t

h(Xi, Xj).

Proposition. (Ut)
∞
t=1 is a reverse martingale with respect to (Et)∞t=1.

I This fact was established by Berk (1966) with respect to a distinct filtration.
I Our past approach for lower confidence sequences can now be adapted to obtain

both lower and upper confidence sequences based on Ut.



Further Examples: V-Statistics and U-Statistics

Let h : Rd × Rd → R be a symmetric function. Set

Φ(P ) = E[h(X,X ′)], where X,X ′ ∼ P are independent.

Unbiased (U-Statistic) estimator of Φ(P ):

Ut =
2

t(t− 1)

∑
1≤i<j≤t

h(Xi, Xj).

Proposition. (Ut)
∞
t=1 is a reverse martingale with respect to (Et)∞t=1.

I This fact was established by Berk (1966) with respect to a distinct filtration.
I Our past approach for lower confidence sequences can now be adapted to obtain

both lower and upper confidence sequences based on Ut.



Further Examples: V-Statistics and U-Statistics

Let h : Rd × Rd → R be a symmetric function. Set

Φ(P ) = E[h(X,X ′)], where X,X ′ ∼ P are independent.

Unbiased (U-Statistic) estimator of Φ(P ):

Ut =
2

t(t− 1)

∑
1≤i<j≤t

h(Xi, Xj).

Proposition. (Ut)
∞
t=1 is a reverse martingale with respect to (Et)∞t=1.

I This fact was established by Berk (1966) with respect to a distinct filtration.
I Our past approach for lower confidence sequences can now be adapted to obtain

both lower and upper confidence sequences based on Ut.



Further Examples: V-Statistics and U-Statistics

Let h : Rd × Rd → R be a symmetric function. Set

Φ(P ) = E[h(X,X ′)], where X,X ′ ∼ P are independent.

Unbiased (U-Statistic) estimator of Φ(P ):

Ut =
2

t(t− 1)

∑
1≤i<j≤t

h(Xi, Xj).

Proposition. (Ut)
∞
t=1 is a reverse martingale with respect to (Et)∞t=1.

I This fact was established by Berk (1966) with respect to a distinct filtration.

I Our past approach for lower confidence sequences can now be adapted to obtain
both lower and upper confidence sequences based on Ut.



Further Examples: V-Statistics and U-Statistics

Let h : Rd × Rd → R be a symmetric function. Set

Φ(P ) = E[h(X,X ′)], where X,X ′ ∼ P are independent.

Unbiased (U-Statistic) estimator of Φ(P ):

Ut =
2

t(t− 1)

∑
1≤i<j≤t

h(Xi, Xj).

Proposition. (Ut)
∞
t=1 is a reverse martingale with respect to (Et)∞t=1.

I This fact was established by Berk (1966) with respect to a distinct filtration.
I Our past approach for lower confidence sequences can now be adapted to obtain

both lower and upper confidence sequences based on Ut.



Further Examples: V-Statistics and U-Statistics

Proposition. (Ut)
∞
t=1 is a reverse martingale with respect to (Et)∞t=1.

Proof Sketch. Either proceed as before, or note that:

Ut = E[Ut|Et] =
2

t(t− 1)

∑
1≤i<j≤t

E[h(Xi, Xj)|Et].

By symmetry,
E[h(X1, X2)|Et] = E[h(Xi, Xj)|Et], ∀i 6= j.

Therefore,
Ut = E[h(X1, X2)|Et].

whence,

E[Ut|Et+1] = E
{
E[h(X1, X2)|Et]|Et+1

}
= E[h(X1, X2)|Et+1] = Ut+1.
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Discussion on the Choice of Filtration

I (Φ(Pt)) is a reverse submartingale with respect to (Et).

I (Φ(Pt)) is also lower-bounded by a reverse martingale with respect to (Et).
I But (Φ(Pt)) is also adapted to the canonical forward filtration,

Dt = σ(X1, . . . , Xt), t = 1, 2, . . .

I (Et) was a useful design tool, but we will ultimately do statistical inference with
respect (Dt). e.g.:

P(Φ(P ) ∈ Cτ ) ≥ 1− α, for any stopping time τ with respect to (Dt).
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Confidence Sequences for the Two-Sample Problem and
Partially-Ordered Martingales



Recall the two-sample problem

Given:
I Observations (Xt)

∞
t=1 i.i.d. from an unknown distribution P , and (Ys)

∞
s=1 from an

unknown distribution Q.
I Empirical measures: Pt = (1/t)

∑t
i=1 δXi , Qs = (1/s)

∑s
j=1 δYj .

I A bivariate functional Ψ. For instance, Ψ(P,Q) = D(P‖Q) for a divergence D.

What is a reasonable definition of two-sample confidence sequence?
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Suppose we wish to test whether (Xt) and (Ys) have the same mean. Start by testing if (Xt) has
mean µ0 and (Ys) has mean µ1. Assume Xi, Yi ∈ [0, 1].

Protocol: Testing two means µ0, µ1.
K0 = 1
for n = 1, 2, . . . do

Skeptic announces
λ(i) ∈

[
− 1

1−µi
, 1
µi

]
, i = 0, 1.

Realities announce In ∈ {0, 1}.
if In = 0 then

Reality 0 announces X
Kn = Kn−1

(
1 + λ(0)(X − µ0)

)
else

Reality 1 announces Y
Kn = Kn−1

(
1 + λ(1)(Y − µ1)

)
end

end

T (n) =
n∑

j=1

(1− Ij), S(n) =
n∑

j=1

Ij .

Bet at time n: (1− In)λ
(0)
T (n) + Inλ

(1)
S(n).

Obs. at time n: (1− In)XT (n) + InYS(n).

Two-Sample Capital Process:

Kn =

n∏
j=1

[(
1 + λ

(0)
T (j)(XT (j) − µ0)

)1−Ij

·
(
1 + λ

(1)
S(j)(YS(j) − µ1)

)Ij]
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The two-sample capital process

Kn =

n∏
j=1

(
1 + λ

(0)
T (j)(XT (j) − µ0)

)1−Ij (
1 + λ

(1)
S(j)(YS(j) − µ1)

)Ij
I If (In) is a deterministic sequence, then Kn is a nonnegative martingale w.r.t.:

Dt = σ(Z1, Z2, . . . ), where Zn = (1− In)XT (n) + InYS(n).

I The same holds true if (In) is predictable (with some care about the filtration).
I We deduce P(∃n ≥ 1 : Kn(µ0, µ1) ≥ 1/α) ≤ α, thus

Cn = {(µ0, µ1) : Kn(µ0, µ1) ≤ 1/α}

is a 1− α confidence sequence for (EP [X],EQ[Y ]).

I I (∃µ : (µ, µ) ∈ Cn) is a sequential 1− α test for H0 : µ0 = µ1.
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Generalization to convex functionals

Let Ψ be a bivariate convex functional. If (In) is deterministic,

(Ψ(PT (n), QS(n)))
∞
n=1 is a reverse submartingale w.r.t. exch. filtr. of (Zn)

∞
n=1.

Similarly as before, we thus get [`n, un] s.t.:

P
(
∀n ≥ 1 : −`n ≤ Ψ(P,Q)−Ψ(PT (n)‖QS(n)) ≤ un

)
≥ 1− α.

I We conjecture this is also true if (In) depends on Z1, . . . , Zn−1, but not on the order
of X1, . . . , XT (n) and Y1, . . . , YS(n).

I What if we want (In) to depend arbitrarily on the data? Including at time n?
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Again, consider testing if (Xt) has mean µ0 and (Ys) has mean µ1.

Protocol: Separately testing two means.
K0 = 2
K(0)

0 = K(1)
0 = 1

for t = 1, 2, . . . do
Skeptic 0 announces λ(0)t ∈

[
−1

1−µ0
, 1
µ0

]
Reality 0 announces Xt

K(0)
t = K(0)

t−1

(
1 + λ

(0)
t (Xt − µ0)

)
end
for s = 1, 2, . . . do

Skeptic 1 announces λ(1)s ∈
[

−1
1−µ1

, 1
µ1

]
Reality 1 announces Xt

K(1)
s = K(1)

s−1

(
1 + λ

(1)
s (Ys − µ1)

)
end
Capital at times (t, s): Kts = K(0)

t +K(1)
s

The Partially-Ordered Capital Process:

Kts =

t∏
i=1

(1 + λ
(0)
t (Xt − µ0)

)
+

s∏
j=1

(
1 + λ(1)s (Ys − µ1)

)
.

I (K0
t ) and (K1

s) are martingales, so
P(∃t ≥ 1 : K(0)

t ≥ K(0)
0 /α) ≤ α.

P(∃s ≥ 1 : K(1)
s ≥ K(1)

0 /α) ≤ α.

hence,

P(∃t, s ≥ 1 : Kts ≥ K00/α) ≤ 2α.
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Partially-ordered processes become more important for functionals other than means.

Two approaches:
I n-Uniform Confidence Sequence. Assume the ordering T (n) and S(n) are

known, or data-independent. Then, can obtain `n, un such that:

P(∀n ≥ 1 : −`n ≤ Ψ(P,Q)−Ψ(PT (n), QS(n)) ≤ un) ≥ 1− α.

I (t, s)-Uniform Confidence Sequence. Assume the data comes in any
data-dependent order. Then, we would like to find `ts and uts such that
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Partially-ordered forward filtrations and martingales

A partially-ordered forward filtration is a sequence (Fts)
∞
t,s=1 of σ-algebras which is

increasing with respect to the partial order on N2, i.e.:

Fts⊆F(t+1)s, Fts⊆Ft(s+1), t, s = 1, 2, . . .

A partially-ordered forward martingale with respect to (Fts)
∞
t=1 is a process (Mts)

∞
t,s=1

such that:
I Mts ∈ Fts for all t, s ≥ 1.
I We have,

E[M(t+1)s|Fts] =Mts, E[Mt(s+1)|Fts] =Mts, t, s = 0, 1, . . . .

Replace by ≤ for supermartingales and ≥ for submartingales.
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Partially-ordered reverse filtrations and martingales

A partially-ordered reverse filtration is a sequence (Fts)
∞
t,s=1 of σ-algebras which is

decreasing with respect to the partial order on N2, i.e.:

Fts⊇F(t+1)s, Fts⊇Ft(s+1), t, s = 1, 2, . . .
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Ville's Inequality does not hold for partially-ordered

martingales

Thoerem (Cairoli, 1970). There exists a forward martingale (Mts) and u > 0 such that

P(∃t, s ≥ 0 :Mts ≥ u) >
E[M00]

u
.

Some Intuition. Recall our earlier example: Kts = K(0)
t +K(1)

s . Then, for all u > 0,

P(∃t ≥ 1 : K(0)
t ≥ u) ≤ E[K(0)

0 ]

u
, and P(∃s ≥ 1 : K(1)

s ≥ u) ≤ E[K(1)
0 ]

u
,

hence,

P(∃t, s ≥ 1 : Kts ≥ u) ≤ 2E[K00]

u
.
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Analogues of Ville's Inequality nevertheless hold

Definition (Cairoli and Walsh, 1970). (Fts) is said to be conditionally independent if

FTs q FtS | Fts, ∀t ≤ T, s ≤ S.

Intuition. Let (Mts) be a partially ordered forward reverse martingale. By definition,

E[MTs|Fts] = E[Mts|Fts].

Under conditional independence, one further has:

E[MTs|FtS ] = E[Mts|FtS ].
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Analogues of Ville's Inequality nevertheless hold

Theorem (Follows from Christofides and Serfling, 1990). Let (Mts) be a partially ordered
forward reverse martingale with respect to a conditionally independent filtration (Fts).
Assume Mts admits k > 1 moments. Then,

P(∃t, s ≥ 1 :Mts ≥ u) ≤
(

k

k − 1

)kE[Mk
00]

uk
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Main Proof Idea. The following bound holds by Markov but is not useful:

P(∃t, s ≥ 1 :Mts ≥ u) = P
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Mts ≥ u

)
≤ 1
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Proposition. If Ψ is convex, then (Ψ(Pt, Qs))
∞
t,s=1 is a partially-ordered reverse

submartingale with respect to the filtration

Ets = EX
t

∨
EY
s := σ(EX

t ∪ EY
s ), t, s = 1, 2, . . . ,

where (EX
t ) and (EY

s ) are the exchangeable filtrations generated by (Xt) and (Ys)
respectively. Furthermore, (Ets) is conditionally independent.



Application to convex divergences
Assume Ψ is convex and

E
[

exp
(
λ(Ψ(Pt, Qs)−Ψ(P,Q))

)]
≤ exp(ψts(λ)),

I Known Ordering. Assume the orderings T (n) and S(n) are known and recall that∑∞
k=1 1/`(k) = 1. Then,

P
{
∃n ≥ 1 : Ψ(PT (n), QS(n)) ≥ Ψ(P,Q) + (ψ∗

T (n)/2,S(n)/2)
−1
(

log `(log2 n) + log(1/δ)
)}

≤ α.

I Partial Ordering. : Assume now that
∞∑
k=1

∞∑
j=1

1

g(k + j)
=

1

e
.

P
{
∃t, s ≥ 1 : Ψ(Pt, Qs) ≥ Ψ(P,Q) + (ψ∗

t/2,s/2)
−1
(

log g(log2 t+ log2 s) + log(1/δ)
)}

≤ α.
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Example: Maximum Mean Discrepancy, again
I Known Ordering. Assume the orderings T (n) and S(n) are known or depend only

on external randomization. Then,

P(∀n ≥ 1 : `n ≤ D(P‖Q)−D(PT (n)‖QS(n)) ≤ un) ≥ 1− α.

`n = 4

√
B

n

[
1.2 log logn+ log(9/α)

]
+ 2

√
2B

n
, un = 2

√
B

n

[
1.2 log logn+ log(9/α)

]
.

I Partial Ordering. Instead,

P(∀t, s ≥ 1 : `ts ≤ D(P‖Q)−D(Pn‖Q) ≤ uts) ≥ 1− α.

`ts = 4

√
Bts

t+ s

[
2.2 log(log t+ log s) + log(15/δ)

]
+ 2

√
2B

(
1√
t
+

1√
s

)
uts = 2

√
B

t

[
1.2 log log t+ log(18/α)

]
+ 2

√
B

s

[
1.2 log log s+ log(18/α)

]
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Summary

I Reverse martingales can be useful tools for sequential inference.

I Forward and reverse martingales share many similar properties, but the latter arise
more naturally from symmetry arguments.

I Filtrations are not nuisances—they are design tools.
I Partially-ordered martingales are sometimes useful for sequential inference, but

have some technical challenges.
I Let us know if you have a betting interpretation of reverse martingales. :)
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