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Traditional waveform based spike sorting yields biased
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Much of neuroscience has to do with relating neural activity and
behavior or environment. One common measure of this relation-
ship is the firing rates of neurons as functions of behavioral or envi-
ronmental parameters, often called tuning functions and receptive
fields. Firing rates are estimated from the spike trains of neurons
recorded by electrodes implanted in the brain. Individual neurons’
spike trains are not typically readily available, because the signal
collected at an electrode is often a mixture of activities from differ-
ent neurons and noise. Extracting individual neurons’ spike trains
from voltage signals, which is known as spike sorting, is one of the
most important data analysis problems in neuroscience, because it
has to be undertaken prior to any analysis of neurophysiological
data in which more than one neuron is believed to be recorded
on a single electrode. All current spike-sorting methods consist
of clustering the characteristic spike waveforms of neurons. The
sequence of first spike sorting based on waveforms, then estimat-
ing tuning functions, has long been the accepted way to proceed.
Here, we argue that the covariates that modulate tuning functions
also contain information about spike identities, and that if tuning
information is ignored for spike sorting, the resulting tuning func-
tion estimates are biased and inconsistent, unless spikes can be
classified with perfect accuracy. This means, for example, that the
commonly used peristimulus time histogram is a biased estimate of
the firing rate of a neuron that is not perfectly isolated. We further
argue that the correct conceptual way to view the problem out is to
note that spike sorting provides information about rate estimation
and vice versa, so that the two relationships should be consid-
ered simultaneously rather than sequentially. Indeed we show that
when spike sorting and tuning-curve estimation are performed in
parallel, unbiased estimates of tuning curves can be recovered even
from imperfectly sorted neurons.
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M uch of neuroscience has to do with relating neural activ-
ity and behavior: how does the brain use its neurons to
produce sensory integration, motor coordination, learning, emo-
tions, etc., and how do neurons encode parameters associated with
these behaviors? Such questions have been investigated by record-
ing brain activity during behavioral tasks to uncover associations
between the two. Different aspects of brain activity are captured by
different tools like functional MRI, PET, magnetoencephalogra-
phy, etc. Here, we consider the spike trains of neurons provided by
electrodes implanted in the brain, that is, the sequence of times at
which neurons fire action potentials, or spikes. The modulation of
neurons’ spiking rates by behavioral or environmental covariates
is widely accepted to be one way that neurons encode informa-
tion about these covariates. One common measure of association
between behavior and neural activity is therefore the firing rates of
neurons as functions of covariates of interest, often called tuning
functions or receptive fields.

The spike trains needed to calculate tuning functions are typ-
ically obtained from extra-cellular electrodes, that is, from elec-
trodes that are positioned outside of the neurons in the tissue.
The signal collected at such electrodes is typically a mixture of
the activities of nearby neurons and noise, from which individual
neurons’ spike trains must be extracted. This extraction process is
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known as spike sorting. It is one of the most important data analy-
sis problems in neuroscience, because it has to be undertaken prior
to any analysis of neurophysiological data in which more than one
neuron is believed to be recorded on a single electrode.

Spike sorting is a clustering problem: neurons produce spikes
that have distinct, reproducible waveforms, so that the spikes
recorded at an electrode can be clustered into homogeneous
groups, which presumably correspond to different neurons. Clus-
tering techniques for spike sorting are many and range from
nonparametric approaches such as k-means (1), neural networks
(2), to likelihood and Bayesian model-based clustering using mix-
tures of distributions (3). More extensive references are provided
in refs. 4 and 5.

The sequence of first spike sorting based on waveforms, then
estimating tuning functions, has long been the accepted way to
proceed. However, the covariates ¢ that modulate the neurons’
firing also contain information about spike identities. To see this,
consider an electrode that records two neurons. Imagine that
one neuron spikes only when ¢; < ¢ < ¢;, and the other only
when ¢; < ¢ < c3, so that they never spike together. A spike
recorded at the electrode will be assigned to one of the two neurons
based on features of its waveform, perhaps in error if waveform
clusters overlap. But we cannot make a mistake if we use ¢ for
spike sorting. Indeed, if ¢c; < ¢ < ¢, when a spike is detected
at the electrode, then the spike must have been produced by
neuron 1. If ¢c; < ¢ < c3, then it is necessarily neuron 2 that
spiked.

Because they ignore the information in rate modulating covari-
ates ¢, current spike sorters are suboptimal. But what is more
troubling is that their misclassification rates are functions of
¢, so that spikes are not misclassified at random. This is intu-
itively problematic if the goal is to estimate how neurons are
modulated by c. Our first contribution is a proof that tun-
ing functions estimated from spikes sorted based on wave-
forms are biased and inconsistent, unless spikes can be clas-
sified with perfect accuracy. Our second contribution is the
formulation of a clustering approach that incorporates tun-
ing information, and which yields unbiased tuning function
estimates.

1. Background and Results

Consider an electrode that records I waveform generators. Gen-
erators are either neurons, or sources of noise such as static
discharges, fluctuations in the local field potential, etc. When the
bandpassed voltage of the electrode exceeds a chosen threshold
at time ¢, we record a snippet of measurements a,, which may cor-
respond to a real spike, to noise, or to some combination of spikes
and noise. Note that for simplicity and without loss of generality,
all generators and their waveforms may be referred to as neurons
and spikes in the rest of the article, unless noted otherwise. The
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methods described here apply in general so the recorded wave-
forms a, can also be reduced to sets of features such as principal
components (PCs) (6) or wavelet coefficients (7). We denote by X
the set of /-dimensional binary vectorsx = (xi, . ..,x7) that give all
(2! — 1) possible subsets of the I generators being active alone or
approximately together to produce a suprathreshold event at the
electrode. For example, when I = 2, x can take 2/ — 1 = 3 values,
(1,0) = 10, (0,1) = 01 or (1,1) = 11, which corresponds to gen-
erators 1 and 2 being active alone and together. Finally, we denote
by ¢, the value at time ¢ of the covariates thought to modulate the
neurons’ firing rates, A;(c;),i =1,...,1.

1.1. Background. Traditional spike sorting using waveforms.
Neurons fire spikes that have characteristic waveforms, but,
because the voltage of an electrode is noisy, recorded wave-
forms do not match their true waveforms exactly, but rather arise
from distributions f; centered around them. Either implicitly or
explicitly, all spike-sorting methods assume that suprathreshold
measurements @, originate from a mixture distribution

f@) =Y " wnf(a), 1]

xeX

where 7, is the proportion of events produced by generator com-
bination x so that )" _, m, = 1. Eq. 1 makes no assumption. It
simply states that, given a suprathreshold event at the electrode,
the probability that it was produced by x is 7, and if so, its mea-
surement a arises from f,. Eq. 1 can be visualized by plots of the
data. For example, overlaying raw voltage measurements or plot-
ting their PCs against one another will reveal, more or less clearly,
clusters that are each a random sample of a component distri-
bution f;. Spike sorting effectively consists of separating these
clusters, so that all spikes within each domain can be assumed
to have originated from the same f;.

Many methods exist to find cluster boundaries (4), the simplest
being to draw them by hand. Another is to make explicit use of
Eq. 1. First, Bayes rule yields the probability that a suprathresh-
old event with measurement a was produced by combination
xe X,

”xﬁr(a)
fl@ ’

P(x|a) = [2]

where the denominator is Eq. 1 and the numerator are its sum-
mands. The event is then assigned to the combination x* that
maximizes P(x | a),

x*(a) = argmax P(x | a), [3]
xeX
with corresponding allocation for generator i = 1,...,7 the ith

component of x*(a). Although it is not immediately obvious, this
procedure also consists of drawing cluster boundaries. For exam-
ple, the boundaries implied by Eq. 3 are linear or quadratic when
the f, are Gaussians with equal or unequal covariance matrices
(8). This is illustrated in Fig. 1B.

Eq. 3 is known as the optimal classification rule, because it
yields the lowest spike misclassification rate (8). The catch is
that 7, and f, must be known. How close to optimal this clas-
sification rule is in practice depends, therefore, on the validity
of the models we select for f, and on how well we can estimate
them from data. At present, f, are most commonly assumed to
be Gaussians (3), although ¢ distributions might be more suitable
(9, 10).
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Fig. 1. Spike sorting, toy example. Two neurons are recorded by an elec-
trode. Neuron 1 spikes only when 0 < ¢ < 3, neuron 2 only when 3 < ¢ < 6.
The first two PCs of their waveforms are simulated from bivariate Gaussians:

fio = N((0,0), ("% 3.)), for = NS, (3" 3.)). and f1; = 0 since neurons do
not spike together. (A) Plot of the two PCs. Each dot represents a spike. We see
what could be two overlapping elliptical shaped clusters, or a single peanut-
shaped cluster. (B) Cluster boundaries drawn by hand assuming there are two

clusters (straight line), and by applying Eq. 3 assuming that f, are Gaussians.

Soft or probabilistic spike assignments are seldom used for spike
sorting, but we consider them because they are crucial to our
results. The portion of an event with measurement a we allocate
to generator i is

=" P@x|a), [4]

xuj=1

where the sum is over all combinations x that code for gen-
erator i being active (x; = 1). For example, when I = 2, if
P(x|a)=0.1,0.3 and 0.6 forx = 10, 01, and 11, respectively, soft
assignments allocate 0.1 + 0.6 = 0.7 and 0.3 4+ 0.6 = 0.9 spike to
generator 1 and 2, respectively, whereas hard assignments (Eq. 3)
allocate one full spike to both.

Traditional estimation of tuning curves. Estimating the neurons’
tuning curves X;(c) involves choosing a model for A;(c), and
regressing the neurons’ spike trains y; = (yi,t = 1,...7T) on
¢ = (¢t = 1,...T). Models for A;(c) can be parametric, such
as cosine functions for motor cortex data, or non-parametric,
such as spline smoothers or step functions, which are commonly
used to obtain peristimulus time histograms (PSTHs). Differ-
ent types of regressions are appropriate for different situations.
Hard assignments spike trains are binary, so a binary, e.g., logis-
tic, regression should be used. If spike trains are first binned and
resulting spike counts regressed on the covariate, as is often done
to obtain a PSTH, a Poisson regression should be used. Soft spike
trains y; = yl-SOft take values in [0, 1], so binary regression is no
longer appropriate. In that case we apply a transformation to yf"ft,
which maps [0, 1] onto [—o0, +00], e.g., logit or probit transforma-
tions, so that the transformed yl-s"fl becomes amenable to ordinary
regression.

Spike sorting incorporating tuning information. The inputs to any
clustering procedure are vectors of features that characterize the
data, e.g., waveform features in the context of spike sorting. The
simplest such procedure relies on a plot of these inputs to cut clus-
ters by hand. The same inputs yield estimates of 7, and f, when
clustering is based on Eq. 3. This was illustrated in Fig. 1B.

The information provided by the modulation of neurons by
covariates ¢ can be incorporated for spike sorting by supple-
menting the feature vectors with the values of ¢ concurrent with
suprathreshold events. These augmented vectors can then be used
as inputs to any clustering procedure. The simplest case is illus-
trated in Fig. 2: features are plotted against each other and clusters
can be cut by the naked eye. Just as different waveforms help iden-
tify neurons, so do the dimensions of ¢ that modulate neurons

Ventura



[

P

1\

=y

PC1 vs. PC2 vs. c

(el
—300 -100 0 100 PC2

PC1

Fig. 2. Same data as in Fig. 1, but the PCs are now plotted against the rate-
modulating covariate c¢. The two clusters that previously overlapped (Fig.
1) are now separated along the c axis. Note that better cluster separation
can sometimes be achieved by using more PCs. However, the information in
covariates about spikes’ identities is independent of waveform information,
and can be useful for spike sorting however much information waveforms
provide.

most differently. In the extreme case when tuning curves share no
common support, as in Fig. 2, clusters are separated perfectly. In
practice, tuning curves often have common support, so clusters
will overlap. In that case misclassified spikes are unavoidable, so
we prefer a model-based spike sorter that minimizes misclassi-
fications, as follows. We begin by writing the distribution of the
waveforms, as in Eq. 1, but this time we condition on c. This gives

fale)=Y mhal o), (5]

xeX

where m,(c) is the probability that, given a suprathreshold event
at the electrode when the covariates take value c, generator com-
bination x gave rise to that event, and f;(a | ¢) is the distribution
of its measurement a. Waveforms are characteristic of the neu-
rons who produce them and do not depend on covariates, so we
can reduce f;(a | ¢) to the same f;(a) used in Eq. 1. We then use
Bayes rule to calculate the probability that a suprathreshold event
with waveform a, detected at the electrode when the covariate has
value c, was generated by x € X,

m(e)fe(@)
Px|a,c)=—"—. [6]
“1O= o
A hard assignment allocates this spike to combination
x*(a | c) = argmax P(x | a,c), [71

xeX

with corresponding allocation for generator i the ith component,

yhard = x*(a | ¢), while a soft assignment allocates

=Y Pxlac) 8]
x:x;=1

to generatori,i=1...,1I.
This approach is optimal, but requires that Eq. 5 be estimated.
This involves choosing models for f(a) and A;(c), and a model

* Note that in Egs. 1 and 5, we could let fx(a) depend on spiking history, to account
for waveform nonstationarities such as spike amplitude decays after short interspike
intervals.
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for neuron dependencies, which dictates how the 7, (c)’s relate to
the 2;(c)’s. To see this, assume that composite, substantially dif-
ferent, waveforms are recorded whenever two generators spike
within ¥ ms of one another. Then the probabilities that gener-
ator j contaminates a spike from generator i, j # i, are 2y ;(c)
and 1 — 2y 2;(c), respectively, with A; expressed in spikes per mil-
lisecond. Therefore, if an electrode records / = 2 independent
generators, the probabilities 710(c), 7o1 (¢), and 11 (c) that genera-
tors spike alone or together are proportional to A1 (c)[1—2y A2(c)],
A()[1—=2yxi(c)], and 2y A1 (c)r2(c), respectively. Similar expres-
sions can be derived for larger I (11). If generators are dependent,
m(c) = m(c | H) are expressed as above, but the A;’s now
depend on some aspects of spike train histories H (ref. 12, and
references therein). For example, if / = 2 neurons cannot spike
within sy ms of each other, we could reduce spiking history to
H = {s1,52}, with s; the time elapsed since neuron i last spiked,
and set A;(c | s1,52) = Af(c) if s; > 59 and 0 otherwise, i = 1,2,
j # i. Then given a suprathreshold electrode event at ¢, this
would imply mio(c; | 0,52) o Af(c), moi(cs | s1,0) o< A3(c;), and
m1(¢; | 0,0) = 0, which matches the intuition that, if neurons
cannot spike together, the probability that the spike at ¢ was fired
by neuron i is proportional to its rate.

Models for f;, A;, and joint spiking are the same assump-
tions needed to first spike sort based on Eq. 1, then esti-
mate tuning curves, although they must now be specified all at
once rather than sequentially. Note that neurons are typically,
or implicitly, assumed to be independent for traditional spike
sorting. Similarly, relationships between neurons are typically
ignored to estimate tuning curves, unless they are of primary
interest (13). A default assumption of independence is still an
assumption.

The next step is to estimate Eq. 5. This might first seem impos-
sible, because the 7,(c)’s depend on the yet unknown 2;(c)’s. But,
just as the information in waveforms can be harnessed to esti-
mate f; and m, in Eq. 1 (3), so the information in the times of
suprathreshold events can be harnessed to estimate 7.(c), and
therefore A;(c), in Eq. 5 (11). The algorithm in ref. 11 does just
that, under the assumptions that f, are Gaussians, neurons are
independent, and spike independently of the past; it accommo-
dates parametric and nonparametric models for A;, and can be
easily extended to allow other choices for f;, such as ¢ distribu-
tions. This algorithm is an exact expectation-maximization (EM)
algorithm of the same type as the algorithm in ref. 3, which out-
puts the maximum likelihood estimates of f, and m,(c). Because
this algorithm is maximum likelihood based, tools for model and
variable selection are readily available: the number of neurons
recorded by an electrode can be determined by penalized like-
lihood (AIC, BIC), and models for f;, A;, and the variables ¢
that significantly modulate spiking rates can be chosen via like-
lihood ratio tests (12). Several of these issues are illustrated in
supporting information (SI) Appendix, and more details are in
ref. 11.

With Eq. 5 estimated, suprathreshold events are sorted and
tuning curves estimated, as described in the previous section.
Note that the estimates of A;, i = 1,...,I, obtained as part of
the estimation of Eq. 5 correspond to the estimates obtained
by regressing the soft spike trains in Eq. 8 on the covariates
c. The proposed spike sorter effectively performs spike sort-
ing and tuning function estimation simultaneously rather than
sequentially.

1.2. Results. However basic or sophisticated, regressing a
response variable y on covariates ¢ always achieves the same goal:
it provides an estimate of E(Y | ¢), that is an estimate of how y
varies as a function of ¢ on average. In our context, where y; is
the spike train of neuron i after spike sorting, we regress y; on ¢
to estimate its tuning curve A;(c). This regression therefore makes
sense only if E(Y; | ¢) = Ai(c).
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Theorem 1.1. Hard assignment spike trains from ad hoc and optimal
spike sorters in Egs. 3 and T are such that

E(VP | ¢) # 1(0),

unless spikes can be classified with no errors. Hence, hard spike
trains do not yield consistent tuning curve estimates unless waveform
clusters are perfectly separated.

An estimate is inconsistent if it is systematically biased, and if
the bias does not disappear as the sample size increases. In prac-
tice, the more the waveform clusters will overlap, the more severe
the bias will be, especially if neurons have very different tuning
curves, since ¢ then carries substantial information about spikes’
identities that is ignored for sorting spikes. Note that tuning-curve
estimates are biased even if neurons are not tuned to c¢. To see that,
imagine that an electrode records I = 2 neurons, and that the fir-
ing rate of neuron 1 is large enough compared with that of neuron
2 so that ﬂ]of]o(a) > 1101f01 (d) and ﬂ]Qf]o(d) > 7111f11(a) for all a.
Then according to Eq. 3, all spikes recorded at the electrode will
be assigned to neuron 1, so that the firing rate estimate of neuron
2 will be zero.

Although we proved Theorem 1.1 only for hard spike trains from
model-based and ad hoc spike sorting, it will likely apply to all
spike-sorting procedures that ignore covariate information.

Theorem 1.2. Soft spike trains obtained from waveform and tuning
based spike sorting in Eq. 8 are such that

E(Y " | ¢) = i)

Regressing c on such spike trains thus provides unbiased tuning-curve
estimates.

Theorem 1.2 is valid regardless of how much the waveform clus-
ters overlap. In practice, if the overlap is substantial, or if the
sample size is small, tuning-curve estimates will have large vari-
ances, so they may not match the true curves closely. However
they match the true curves on average, whatever the sample size.

Theorem 1.2 is unlikely to apply to soft spike trains from other
procedures. For example, we prove in SI Appendix that the soft
spike trains from traditional waveform based optimal spike sorting
(Eq. 4) yield biased tuning-curve estimates.

1.3. [lllustration. Spike sorting is a central issue for designing
algorithms for neural prosthetic control, because spike trains are
collected from chronically implanted electrodes. The following toy
experiment is inspired by spike train decoding experiments. Other
examples can be found in SI Appendix

Say that I = 2 motor cortex neurons are recorded by an elec-
trode while a monkey traces a 2D circle over the course of 12 s, with
hand position at time ¢,x; = 12 cos (¢/12) andy, = 12sin (t/12).
The velocity amplitude remains constant on this path, so tuning
curves can be expressed as functions of directional angle/tuning
d € [0,27], where d = arctan(y/x). We assume that neurons
spike independently according to Poisson processes with rates
Ari(d) = exp(2.7 + 2cos(d — d;)),i = 1,2, and preferred direc-
tions d; = 0 and d, = 7 /2. These rates have the same profile and
little common support, so w9 = wy = 49.5% are equal, while
w11 = 1% is small. Without loss of generality we use only one
waveform PC for spike sorting, which we simulate from normal
distributions with means and variances (6, 1) and (8, 1) for the two
neurons (x = 10 and 01), respectively. The f; overlap partially,
so spike misclassification errors are unavoidable. We also assume
that a single composite waveform is recorded whenever the two
neurons spike within y = 1 ms of one another, and we simulate
the PCs of such waveforms from fi;, a normal distribution with
mean and variance (10.5, 3).

We simulated the neurons’ spike trains from this model during
50loops of the circular trajectory, and combined them to create the
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A - True tuning curves 2 Directional

tuning

Firing rate (Hz)
100 150

50

LI Y R B |
(0] 2 n 3mw2 2¢.
Directional tuning (rad.)

C— Estimates from waveform
+tuning soft spike sorting (Eq.8)

B — Estimates from waveform
hard spike sorting (Eq.3)

E — Estimates from waveform
+tuning soft spike sorting (Eq.8)
Noisy electrode case

D — Estimates from waveform
hard spike sorting (Eq.3)
Noisy electrode case

Fig. 3. True tuning curves 1;(d) of two simulated M1 neurons as functions
of directional tuning d in Cartesian and circular coordinates, and mean esti-
mates, along with 95% simulation bands. True curves are overlaid in dotted
lines. (B and D) Waveform-based hard spike sorting in Eq. 3. (C and E) Wave-
form and tuning-based soft spike sorting in Eq. 8. (D and E) Same as B and C,
but the electrode spike train is corrupted with noise. Only tuning-based soft
spike sorting yields consistent estimates. This remains true when the electrode
is noisy.

spike train of suprathreshold electrode events. We then simulated
the PCs of these events from the f, specified above. In practice,
one would now specify models for the unknown f; in Eq. 1, and
for f;, Ai(d), and 7, (d) in Eq. 5, estimate these models from data,
and only then spike sort. Instead we used the frue f, A;(d), and
7y(d), which in practice would correspond to selecting the correct
families of models and fitting them to a very large dataset. Our
illustrations can thus be reproduced easily, while avoiding estima-
tion issues that are not central to this article.” With the data sorted,
we fitted functions linear in cos(d) and sin(d) to the neurons’ spike
trains, the correct family of tuning curve models. We repeated this
simulation 100 times so we could calculate the mean estimated
firing rates and 95% simulation bands, within which fall 95% of
firing rate estimates in repeated simulations. Fig. 3B and C shows
true and mean estimated tuning curves with the 95% bands. As
expected from Theorem 1.1, waveform-based spike sorting yields
inconsistent estimates. This happens because spikes are not mis-
classified at random: when d is close to the preferred direction of
neuron 2 (1), almost all spikes recorded at the electrode belong
to neuron 2 (1), yet traditional spike sorting classifies them based
on waveform information only. Hence, the misclassification rate
is highest in the preferred directions of the neurons.

Chronically implanted electrodes with fixed-depth assignments
cannot be placed strategically to minimize noise. Noise also tends
to increase with time as scar tissue forms around the electrodes.

* visually indistinguishable results were obtained by actually estimating Egs. 1 and 5 by
using the algorithms in ref. 11.
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In that case many suprathreshold electrode events will be noise.
To illustrate this, assume that the noise on the previous electrode
exceeds the threshold at a constant rate of 158 Hz, which corre-
sponds to normally distributed noise with mean 0, SD equal to the
threshold, and voltage sampled every millisecond. The electrode
now records I = 3 generators, the third being a noise source.
We simulated noise events and combined them with the previous
electrode spike train. The proportion of pure noise events versus
real spikes is o0 = 66% to 34%, and a significant proportion of
real spikes are corrupted by noise. We simulated the PCs of pure-
noise events from fjo;, a normal distribution with mean 0 and SD
5, and assumed for simplicity that the waveform PCs of clean and
noise-corrupted spikes arise from the same distributions, that is
we assumed f]oo = f]o],fmo = f()]], and f]]() = f111. This choice is
not particularly realistic but does not affect our results. We spike
sorted the data and estimated tuning curves; they are shown in
Fig. 3D and E. The presence of a noise cluster overlapping with
the clusters of real spikes results in further bias in the tuning-curve
estimates when spike sorting ignores tuning information, whereas
soft assignments in Eq. 8 still yield unbiased estimates.

2. Discussion

The standard paradigm in neuroscience is to perform spike sorting
first, and then analyze the relationship between the spikes and the
putative stimuli. We proved that when spike sorting is conducted
without considering the covariates that modulate neurons spiking,
estimates of their tuning functions are not consistent. We further
argued that the correct conceptual way to view the problem out
is to note that spike sorting provides information about rate esti-
mation and vice versa. As a consequence, spike sorting and tuning
curve estimates should be performed simultaneously rather than
sequentially.

Spike sorting is a clustering problem. The traditional approach
is to cluster vectors of waveform features that characterize
suprathreshold events. We suggest to supplement these vectors
with the covariates thought to modulate neurons spiking. Any
clustering method can then be applied to these augmented vec-
tors, although some adjustments might be needed since covariates
are not physical measurements like waveforms. In particular, we
showed how to adjust model-based automatic spike sorting, and
proved that the resulting tuning curve estimates were unbiased.
From a statistical view point, the proposed method consists of
modeling the waveform measurements as a covariate varying mix-
ture of distributions, whose mixture proportions are themselves
mixtures of the unknown rates of point processes. In practice, this
approach requires that models be chosen for the distributions of
waveforms and joint firing rate model, and that an algorithm be
available to estimate them. Such an algorithm was developed in
ref. 11, under the assumption that neurons are independent of the
past and of other neurons, and the waveform distributions f; are
Gaussian. The more general case is under construction, and will
incorporate non-Poisson spiking behavior and nonstationarity of
waveforms due to, for example, refractory periods and neurons
bursting, as in ref. 14. As for modeling assumptions, they are the
very same ones needed for sequential model-based spike sorting
and tuning-curve estimation, no more, no less. But one legitimate
concern is that the covariate-dependent and soft sorting method
suggested as an alternative to pure waveform hard sorting rep-
resents a significant shift from current practices. Furthermore,
waveform measurements must be saved so they can be included
in the estimation of tuning properties, which is far more cumber-
some than the current practice of spike sorting just once and being
done with it.

Is it worth changing current practices? Tuning-curve bias can
produce erroneous scientific conclusions, as illustrated by the
examples in ST Appendix. But there will be situations where the size
of the bias is not large enough, in an absolute sense, to cause con-
cern. Additionally, there are other sources of bias and variability

Ventura

that might be of greater magnitude. Such sources include the qual-
ity of chosen models for waveforms and tuning functions, and the
size of the sample available for estimation of classification rules,
which not only determines their variances, but also impacts how
well the estimating algorithm will converge. In decoding experi-
ments, we showed that tuning-curve estimates may be biased, but
they will be consistently so if the same spike-sorting method is
used for encoding and decoding. Hence, decoded trajectories will
not themselves be biased. However, Fig. 3 B and D suggests that
tuning-curve estimates are less modulated than the true curves,
which should translate into loss of efficiency. Because decoding
uses many electrodes at once, the resulting aggregate effect might
be substantial. More generally, the size of the bias might be of
concern in studies that report results aggregated across neurons.
Determining when to implement the suggested method will
require an extensive study, and the development of diagnos-
tic tools, which is beyond the scope of this article. Our main
intention here was to bring awareness to the conceptual flaw of
waveform-based spike sorting, and to propose a solution.

3. Methods

Proof of Theorem 1.2: For time bins where a spike is recorded at the
electrode, which we denote by Z = 1, soft spike assignments are such
that

E(YP" | Z=1,0)=E (M)

A0

with expectation with respect to the true waveform distribution. Given c,
that distribution is Eq. 5, not Eqg. 1. Hence,

o Zx:xl-:1 nX(C)fX(a)
E(Ypoft ‘Z=1'C)=/<7f(a|c) )f(a\C)da

= / > m(Of(@)da= Y mx(0)

x:x;j=1 x:x;=1

since densities integrate to one. This summation is over neuron combinations
x that have x; = 1, hence, it is the probability that neuron i spiked, given
Z = 1. Letting Y; denote the true neuron spike train, we therefore have
P(Y;=1.2=1| P(Y;i=1l0) .

E(vf1Z=1,0=P(Y;=11Z=1,0) = 21210 - B9 since v = 1
implies Z = 1. When no spike is detected at the electrode (Z = 0), we set
yoft = 0, so that trivially £(Y°® | Z = 0,¢) = 0 for all c. Then, uncondition-
ally, E(Y3f | ) = E(Yf | Z=1,0P(Z =1 | )+ E(Y* | Z=0,0P(Z=0|
¢) = P(Y; = 1| ¢), which is the firing rate 1;(c) of neuron i, expressed in units
of spikes per the duration of time bins used to discretize the EST. Q.E.D.

Proof of Theorem 1.1: As above we have E(YPd | ¢) = E(YPad | Z =
1,0)P(Z = 1| ¢), which will reduce to A;(c) iff E(YP | ¢,Z = 1) = P(Y; =
11¢)/P(Z =1 c). Without loss of generality we set i = 1, and for simplicity
we work with scalar waveform measurements a, and treat the case of / = 2
neurons. The proof does extend generally but becomes very cumbersome.
Then E(YPd |¢,Z=1)=P(YPd =1|¢,Z=1)=1-P(YP* =0|c,Z=1),
which, for hard spike assignments Eq. 3, simplifies to

1=P[r01f01(A) > m10f10(A) & 701701(A) > T11F11(A)] = 1—/ Af(a | ©)da, [9]

where A = {a : mo1f01(a) > m10f10(a) & mo1fo1(a) > m11f11(a)}. The form of A
depends on the configuration of the f,, x € X. The six possibilities are shown
schematically in Fig. 4. For configuration (Fig. 4A), we have

E(y1hard l¢,Z=1)=1- /az f(a|c)da=1- Z 7% (C)[Fx(az2) — Fx(a1)], [10]
al

xeX

where F, is the cumulative distribution function of f, a; is such that
nmo1for1(ar) = mofio(ar), and ay is such that mo1fp1(a2) = m1fi1(az). Eq. 10
reduces to the required ZX:X1:1 nx(c) for all c iff Foi(az) — For(az) — 1,
Fio(az) — Fio(a1) — 0, and Fy1(az) — Fi1(a1) — 0. Because a; and a; are con-
strained by 01 fo1 (31 ) = 7T1of1o(a1) and 01 fo1 (az) = 7!11f1 1 (az), the three limits
are obtained only as all the f, pull away from one another, so that none shares
a common support. Conversely, f, disjoint implies that a; and a; are such that
F10(a1) = 1, F01(a1) = F11(a1) = 0, F01(az) = F10(a2) = 1, and F1‘|(az) =0 (thiS
can be seen from Fig. 4A by letting the distributions spread apart), so that
For1(a2) — For(ar) = 1 and Fio(a2) — Fro(a1) = Fi(az) — Fri(a1) = 0. Then
E(YPad | ¢,Z = 1) = 1 — mo1(c), which is the probability that neuron 2 does
not spike, which therefore equals 710(¢) +m11() = 3_,x, =1 7x(€), as required,

PNAS | April 28,2009 | vol. 106 | no.17 | 6925

NEUROSCIENCE

STATISTICS


http://www.pnas.org/cgi/data/0901771106/DCSupplemental/SI_Appendix

Fig. 4.
(x = 10), solid for neuron 2 (x = 01), and large dashed for joint spikes
(x = 11)]. The shaded areas indicate the set .A of values of a such that
mo1fo1(a) > mxfx(a), x # 01.

Various configurations for n,fc(a), x € X [dotted is for neuron 1

since ), . » 7x(c) = 1. The other 5 configurations in Fig. 4 work out similarly.
Therefore the common procedure of regressing Y on ¢; yields inconsistent
firing rate estimates, unless the f, are disjoint.
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To prove that hard assignments Eq. 7 yield inconsistent estimates, all we
do is rewrite the proof above with 7, replaced by 7x(c). Then a; and a; also
depend on ¢, which leaves the outcome of the proof unchanged.

Because all spike sorters assume, at least implicitly, that the data arise from
the mixture distribution in Eq. 1, the same proof can be used to show that they
yield inconsistent tuning-curve estimates, with the only change the domain
of integration A in Eq. 9, which must now describe formally the spike assign-
ment rules of these spike sorters. For example, consider the spike sorter that
consists of cutting clusters with the naked eye. A realistic way to do that is
to assign a spike with waveform a to the neuron combination x whose mean
waveform distribution is closest to a. If fo1 and f1o are normal distributions
with equal variance-covariance matrices, this means assigning to neuron 1
all waveforms in the set A = {a : fip(a) > fo1(a)}. Substituting this .A in Eq. 9
does not simplify it to the desired 3, _; mx(c), and thus yields the same
conclusion that resulting tuning curves are inconsistent. One can proceed
similarly for other spike sorters, although it might be difficult to formalize
A. However, despite lacking a general formal proof, we believe that it is
highly unlikely for any waveform-based spike sorter to produce consistent
tuning curves when waveform clusters overlap.
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Supplement for : Traditional waveform based spike sorting yields

biased rate code estimates

Valérie Ventura

S1 Additional theorem

Theorem S1.1. Soft spike trains obtained from waveform based spike sorting in Eq.4 are
such that
E(Y;7" | ¢) # Ni(o),

unless (1) covariates ¢ do not modulate neurons spiking, or (2) tuning curves are pro-
portional and neurons never spike jointly, or (3) spikes can be classified with no errors.

Hence tuning curves estimated from such spike trains cannot be consistent for the true

Ai(c), unless (1), (2), or (3) holds.

Proof: For spike assignments in Eq.4 we still have E(Y;**/* | Z = 0,¢) = 0 for all ¢, but

EmWwZ=L@a/Z“?$ﬁ@ﬂw@m (51)

no longer simplifies to P(Y; = 1 | ¢)/P(Z =1 ¢), unless f(a | ¢) = f(a) for all a and

¢ (Egs.1 and 5 are equal), or spike assignments are identical under traditional and new

spike sorters, that is V(a,c) and Vo € X, “”ff(’;()“) = “”}C(sz)(“) (Egs.2 and 6 are equal).

Egs.1 and 5 are equal for all a only when (1) neurons’ firing rates are not modulated
by c. If (2) all neurons’ tuning curves are proportional, non-constant, functions of ¢,
ie. Xi(c) = a;A(c), it may seem that tuning contains no discriminating information
about neurons. However the probabilities 7, (c) still contain information about neurons
spiking alone or jointly as c varies. Hence Eqgs.2 and 6 are equal only if there is no

joint spiking. Indeed in that case m,(c) = 0 for all z € X such that 3./ z; > 1, and



mo(c) = Apr,nr(c)/ ST hie) = ay.(1,..0)7/ ST a; when 37 2; = 1. Therefore 7,(c)
is a constant independent of ¢ that is necessarily equal to 7., so that Eqs.2 and 6 are equal.
In practice, it is likely that E(Y;*’" | ¢) will be close to A;(c) provided the probabilities of
joint spikes are small. When (3) the distributions f, are non-overlapping, then spikes are
classified with no error, and tuning curves are unbiased since they are obtained from the
true neurons’ spike trains. It is also obtained from Eq.S1: when f, have non-overlapping

supports, Eqgs.2 and 6 are equal for all « and ¢, with value 0 or 1.

S2 Additional example 1

We consider a common type of designed experiment, whose aim is to compare the firing
rates of neurons under several experimental conditions. Here, we consider two conditions
¢ =1 and ¢ = 2 and we assume that [ = 2 Poisson neurons spike independently at constant
rates within each condition. Neuron 1 always spikes at A\;(c¢) = 30Hz, while neuron 2 does
not spike when ¢ = 1, and spikes at 75Hz when ¢ = 2; see Fig.S1A. Without loss of
generality we use only one waveform PC for spike sorting, which we simulate from normal
distributions with means and variances (6, 1), (8,1), and (10.5,3), for x = 10,01, and 11,
respectively. The f, overlap partially, so spike misclassifications are unavoidable. Using
this model, we simulated the neurons’ spikes trains for 10 seconds in each condition, and
concatenated them to form the electrode’s train of suprathrehold events, reducing to just
one event any group of events occurring within 1 msec of one another. We then simulated
the PCs of these events, spike sorted the data, and estimated the neurons’ firing rates.
Spike classification rules and tuning curves were estimated using the algorithms in [1]
for Eq.1 and in |2| for Eq.5, assuming normal distributions for the waveform PCs and a
within condition constant rate model for A;(c). The number of neurons I recorded by the
electrode was determined by AIC. We found I = 2 across simulated datasets, the correct

number, which is not so surprising given that we work in 1-D, the observed sample is



Figure S1:  True firing rates \;(c) of two
neurons under experimental conditions ¢ =

B.WFadhoc  C.WF optimal 1 and ¢ = 2, and average firing rate es-

A.True rates hard SS hard SS

timates with 95% simulation bands (grey

- [ | shadings), within which fall 95% of esti-

I
g° W © W © W mates in repeated simulations. The spike
£ J J J trains used for estimation were obtained
° T ° ° by (B) ad-hoc waveform based spike sort-
1 1 1
oo e e ing, (C) Eq.3, (D) Eq.4, (E) Eq.7, and
D. WF E.WF+uning — F.WF+uning  (p) Fq 8 The estimates in (BCDE) are
soft SS hard SS soft SS
- - biased; moreover both neurons are found
g ° - ° ° to be significantly modulated across condi-
§ W W W tions (p-value << 0.0001). (F) Estimated
:L%
. J - . J B . J B rates match the true rates on average, and
only neuron 2 is correctly found to be sig-
c=1 c=2 c=1 c=2 c=1 c=2
Condition Condition Condition nificantly modulated across conditions.

large (over 1000 spikes), there are only two clusters, which are sufficiently separated and
of similar sizes, and we fit the correct WF' distribution family to the data. To reproduce

results more easily, the true classification rules could be used instead.

We repeated the simulation 100 times to calculate the mean estimated firing rates and
95% simulation bands. They are displayed in Fig.S1. Only soft spike trains in Eq.8 yield
estimates that are equal to the true rates within error (Fig.S1F). Likelihood ratio tests
(they reduce to the usual two-sample t-tests in this application) also confirmed that neuron
2 had significantly different rates under the two conditions (P << 0.0001) whereas neuron
1 did not (P > 0.5%). In contrast, for all other spike sorting methods, t-tests determined
that both neurons had significantly different rates in the two conditions (P << 0.0001).

Erroneous conclusions could matter. For example, extracellular electrodes in dorsal gan-



glia typically record the activities of several types of neurons. Muscle spindles are modu-
lated by muscle length, but only primary afferents also encode for muscle stretch velocity.
If the two conditions in Fig.S1 were to correspond to two different stretch velocities with
constant muscle length, we would conclude from Fig.SIBCDE that the two neurons were
primary afferents, when in fact one might be a type 2 spindle or even a cutaneous neuron.

Misclassified neurons might in turn corrupt subsequent analyses.

S3 Additional example 2

Another common situation involves estimating the temporal evolution of neurons firing
rates in response to a stimulus, by estimating how firing rates vary with ¢, = t, the
experimental time. Fig.S2A shows the true firing rates of I = 2 simulated neurons
recorded by the same electrode. The experiment lasts 1 second, and the stimulus is
presented at time ¢ = 200 msec. One neuron has an excitatory response to the stimulus,
while the other does not respond. We simulated the data for 25 repeats of the experiment,
assuming the same waveform first PC distributions specified in the previous example. We
estimated the spike classification rules, sorted the data, and estimated the firing rates,
assuming normal distributions for the PCs and 50 milliseconds bins step functions for the

firing rates.

Fig.S2 shows the average 50 milliseconds bins PSTHs we would obtain from perfectly
isolated neurons and from spike trains obtained by various spike sorting options. Only
soft assignments in Eq.8 (Fig.S2E) yield firing rate estimates that are similar to those
obtained from isolated neurons (Fig.S2B), while traditional procedures yield estimates
that are biased, and suggest that both neurons have an excitatory response to the stimulus.

Estimates from Eq.7 (Fig.S2G) suggest that one neuron has an inhibitory response.

Inconsistent estimates are more than a statistical inconvenience. Indeed, a preliminary
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Figure S2: True firing rates \;(t) of two neurons recorded by an electrode, and average
PSTHs with 95% simulation bands (grey shadings), within which fall 95% of estimates
in repeated simulations. True rates are overlaid in dotted. PSTHs obtained from (B)
perfectly isolated neurons, (C) ad-hoc spike sorting, spike sorting according to (D) Eq.3,
(E) Eq.8, (F) Eq.4, and (G) Eq.7. Only the estimates in (E) are unbiased and match the

firing rate estimates obtained from the true spike trains in (B).

step in analyses of neural data often consists of grouping neurons in various functional
groups, for example excitatory, inhibitory, or unresponsive neurons. Traditional waveform

based spike sorting can produce mistakes in such groupings.

Note that the family of 50 msec PSTH models we fitted to the data does not include the
true firing rate models in Fig.S2A. In that case firing rate estimates cannot be unbiased
for the true rates, even when they are fitted to the true spike trains, as is evident in
Fig.S2B. They can only be unbiased for the chosen model. This does not conflict with

the theorems, whose proofs involve only true models. Had we fitted to the data a model



flexible enough to include the true model, firing rates estimated from isolated neurons or
from data spike sorted according to Eq.8 would be unbiased for the true rates. Estimates

from waveform based spike sorted data would not.

S4 A spike train decoding simulation

Assume we have the spike trains of motor cortical neurons, each tuned to hand veloc-
ity, and that our goal is to predict movement. Decoding of this population signal has
been accomplished successfully with population vectors, linear, likelihood, Bayesian and
dynamic methods. See [3] for a review of these methods. All methods involve encod-
ing and decoding steps. Encoding consists of estimating the modulation of neurons in
response to neural inputs, here velocity, while decoding uses this knowledge to predict ve-
locity given neural activity. All decoding methods but the population vector summarize
neurons modulations by their tuning curves, which, as we showed in this paper, may be
biased. However tuning curves are consistently biased if we apply the same spike sorting
algorithm to the spike trains used for encoding and decoding. Hence decoded trajectories
will not themselves be biased. However, we remarked that biased tuning curve estimates
appeared less sharply tuned than the true tuning curves, and speculated that this could
degrade decoding performance. The following simulation is a first stab at investigating

this speculation.

Generative model: We simulated spike trains for 80 neurons, assuming the exponenti-

ated cosine tuning curves

where k; and m; are positive constants determining base firing rate and directional sensi-
tivity, D; is the unit-length preferred direction, and the two-dimensional velocity v; traces

out the smooth bold path in Fig.S4 over the course of 12 seconds, with path defined
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Figure S3: True firing rates \;(0) for 4 pairs of neurons recorded by 4 electrodes, plotted
as functions of time along the 12 second velocity path shown in Fig.S4, and histogram of
rate overlap percentages for all 40 electrodes. Many pairs of neurons have similar firing

rates, so there is limited information in the firing rates for spike sorting.

by x; = 6 cos (7t/6),y, = 2 sin (wt/2), for t € [0,12], and velocity defined by the re-
spective derivatives. FEach neuron is assigned random values of k;, m;, and 52-, so that
its maximum firing rate is between 80 and 100 Hertz. Given the velocities, the spike
counts are taken to have Poisson distributions with mean in Eq.S2. To create electrode
spike trains, we assigned two neurons to each of 40 electrodes. Fig.S3 shows the true
firing rates of the neuron pairs on 4 electrodes, plotted as functions of time along the
velocity path, and a histogram of the overlap percentages between the pairs of firing
rates for all 40 electrodes, where the overlap between two rates A\;(t) and Ay (¢) is defined
as ( ;:012860 min| A (£), Aa(t)] dt)/ ( tfolzsec max|A;(t), Aa(t)] dt). The average overlap is
85%, and many electrodes have almost identical firing rates with overlaps close to 100%.
This means that there is much less information for spike sorting in neurons tuning com-
pared to the example of Fig.3 in the main text, for which the firing rates overlap was
uncharacteristically low at 21%. For simplicity, we used the same distributions for the
waveform first PCs of all neuron pairs recorded by each of the 40 electrodes. We took

fz(a) to be normal distributions with means and variances (6,1), (8,1), and (10.5, 3), for

x = 10,01, and 11, respectively.

Fitting model: In implementing encoding and decoding, we assumed Poisson spike

trains with exponential cosine firing rates
Xi(U56;) = exp(Boi + 610, + O25vy). (53)

7
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Figure S4: Trajectories decoded by maximum likelihood using (A) 80 isolated neurons
and (B,C) 80 neurons recorded by 40 electrodes. (B) Traditional approach: tuning curves
are estimated from data spike sorted based on waveform information only. (C) Proposed
approach: spike sorting uses waveform and tuning information. The true trajectory is the
smooth bold line. The gray shadings are 95% confidence bands for the true mean decoded

trajectories; tighter bands mean more accurate predictions.

Generative and fitting models in Eqs.S2 and S3 are different, a realistic scenario since in
real applications we are unlikely to use the true model. However we matched generative
and fitting models for the spikes first PC distributions because our main concern here is to
illustrate the effect that the addition of neurons’ tuning for spike sorting has on decoding

efficiency.

Spike sorting and tuning curve estimation were carried out with data simulated during
4 loops of the velocity trajectory, using the algorithm in [2]. The data were discarded,
and the estimated tuning curves used for movement predictions based on fresh electrode
spike trains (ESTs). These ESTs must be spike sorted prior to decoding, which cannot be
done with the proposed method, since tuning information depends on the very covariate
¥ we aim to predict. To resolve this we used the recursive scheme of [4], which consists of
spike sorting using for ¢ the velocity predicted at the previous time point, before a new

prediction for ¢ can be made.

Results: Fig.S4 shows actual and decoded trajectories. Fig.S4A was obtained by using

isolated neurons. In that case spike sorting is not needed and tuning curves are fitted



directly to the true neurons’ spike trains. To help compare methods we plotted 95%
confidence intervals for the mean decoded trajectory based on 100 repeats of the same
encoding/decoding experiment. Tighter bands correspond to better decoding. The inte-
grated squared error (ISE) also provides a more quantitative assessment of efficiency. For
a particular data set, the ISE is the squared difference between the decoded and actual
velocities, averaged over all time bins. Typically the ISE tends to decrease proportionally
to the inverse of the number of neurons. Therefore, based on this measure, the accuracy
of a method based on N; neurons will be comparable to the accuracy of another method
based on Ny neurons when Ny = Ny X R, where R = [SFE;/ISEs is the ratio of the ISEs
of the two methods. We thus calculated that the traditional method in Fig.S4B would
require 50% more neurons to be as efficient as decoding from isolated neurons, whereas
the proposed method would require 10% fewer. The gain in efficiency of the proposed
method happens because the estimating algorithm alleviates some discrepancies between
generative tuning curve model in Eq.S2 and the fitting model in Eq.S3, as was illustrated
in [4]. Running the same simulation with the mean of fy; equal to 7 rather than 8,
which increases the overlap between f1q and fo; from 19 to 40%, the traditional method
would require twice as many neurons to be as efficient as decoding from isolated neurons.
Letting the mean of fy; take uniform values between 6 and 11, so that fiy and fy; on
each electrode can vary randomly between complete overlap and perfect separation, the
traditional method was 1.5 times less efficient than decoding from isolated neurons. In
contrast, the proposed method remained 10% more efficient than decoding from isolated

neurons in all simulation configurations

This simulation gives evidence that including covariate information for spike sorting might
improve spike train decoding. However, our simulation is not entirely fair, so we must
be cautious with these results. Indeed, we compared traditional maximum likelihood
decoding (Fig.S4B), with a decoding scheme that induces bias and smoothness in the
decoded velocity path, because the predicted velocity at time ¢ is used for spike sorting

at time ¢ + 1. Bias degrades decoding performance, while smoothness reduces variability



and so improves it. This idea was fully explored in [4]. The correct way to compare
the two schemes would be to inject the same amount of smoothness in both, which can
be achieved by modeling the velocity path as a random walk, and working out the full
Bayesian solution for decoding the velocity. This solution is usually referred to as dynamic
(Bayesian) decoding. It has been worked out in the traditional approach [3], but remains
to be resolved for the proposed approach. This solution is well beyond the scope of the

current paper, and is the topic of a separate upcoming manuscript.
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