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ABSTRACT

We propose a novel paradigm for spike train decoding, which avoids entirely spike sorting based on

waveform measurements. This paradigm directly uses the spike train collected at recording electrodes

from thresholding the bandpassed voltage signal. Our approach is a paradigm, not an algorithm, since

it can be used with any of the current decoding algorithms, such as population vector or likelihood

based algorithms. Based on analytical results and an extensive simulation study, we show that our

paradigm is comparable to, and sometimes more efficient than, the traditional approach based on well

isolated neurons, and that it remains efficient even when all electrodes are severely corrupted by noise, a

situation that would render spike sorting particularly difficult. Our paradigm will also save time and

computational effort, both of which are crucially important for successful operation of real-time

brain-machine interfaces. Indeed, in place of the lengthy spike sorting task of the traditional approach,

it involves an exact expectation EM algorithm that is fast enough that it could also be left to run

during decoding to capture potential slow changes in the states of the neurons.
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Figure 1: Traditional NST encoding/decoding paradigm. Both encoding and decoding use as inputs the

neurons’ spike trains (NSTs) yi, which are extracted from the electrodes’ spike trains (ESTs) z via spike

sorting.

1 Introduction

Assume we have the spike trains of motor cortical neurons, each tuned to hand velocity, and that our

goal is to predict movement (Georgeopoulos et al., 1988). This “population coding” is of interest partly

for its role in the neural basis of action and also for its use in brain-machine interfaces, which would allow

direct mental control of external devices (Wessberg et al. 2000, Carmena et al. 2003, Musallam et al.

2004, Schwartz, 2004, Santhanam et al. 2006, Hochberg et al. 2006, Brockwell et al. 2007). Decoding

of this population signal has been accomplished successfully with the population vector (PV) algorithm

(Georgopoulos et al., 1986, 1988, 1989; Taylor et al., 2002), and linear methods (Salinas and Abbott,

1994, Moran and Schwartz, 1999), which characterize each neuron’s activity by preferred direction and

firing rate. Maximum likelihood (Brown et al., 1998) and Bayesian (Sanger, 1996) methods make use of

the full probabilistic descriptions of each neuron’s activity, and are efficient when the model is correct

(Kass et al., 2005). More recently, filtering/dynamic Bayesian methods combine a maximum likelihood

approach with smoothness constraints on the decoded trajectories (Zhang et al., 1998; Brown et al., 1998;

Brockwell et al., 2004; Barbieri et al. 2004; Wu et al. 2004; Shoham et al. 2005; Truccolo et al. 2005;

see Brockwell et al. 2007 for a review and references therein).

These increasingly efficient decoding methods all use as inputs the spike trains of well isolated cortical

neurons obtained from spike sorting the electrical signal at electrodes chronically implanted in the cortex.
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Fig.1 summarizes the current encoding/decoding paradigm. To keep the development of ideas simple,

we assume that we record the voltage of single electrodes, as opposed to tetrodes or arrays. We focus

on a representative electrode that records I neurons. First the bandpassed signal at the electrode is

thresholded to give the times at which spikes occur. We discretize time in bins small enough so that at

most one spike can occur in a bin. Without loss of generality we use one millisecond bins. The discretized

electrode spike train (EST) is denoted by z = (zt; t = 1, . . . , T ), where zt = 1 means that a spike occurred

at t, and otherwise zt = 0. It is the aggregate of I spike trains, yi = (yit, t = 1, . . . , T ), each produced

by a neuron whose activity is at least partly determined by movement variables ~v. To facilitate pictorial

representations in this paper, we take ~v = (vx, vy) to be the velocity of a hand in a 2D plane, though

in real application we would consider 3D intended or actual velocity, position, acceleration, etc. The

neurons’ spike trains (NSTs) yi are not observed but are inferred to some accuracy via spike sorting,

the process of assigning spikes to neurons based on discriminating measurements of their characteristic

waveforms. Next is encoding, the process of estimating how neurons encode information about ~v. The

standard approach is to estimate their firing rates λi(~v; θi), with unknown parameters θi usually estimated

by regressing the NST yi = (yit, t = 1, . . . , T ) on velocity ~vt according to, for example,

yit = λi(~vt; θi) + εt, t = 1, . . . , T, (1)

where εt are random errors 1. The relationship between λi(~v; θi) and ~v can be visualized by plotting

spike counts against ~v (Georgopoulos et al., 1982). This plot, or prior knowledge, helps build a model for

λi(~v; θi). For example, cosine tuning specifies that the tuning function varies linearly with ~v according to

λi(~v; θi) = θi0 + θi1vx + θi2vy , (2)

where θi0 measures the baseline firing rate and the vector (θi1, θi2) points in the preferred direction of

neuron i, while its magnitude measures its directional sensitivity. Finally, decoding consists of predicting

velocity given the NSTs yi and the estimated tuning curves λ̂i. For example, the population vector

(Georgopoulos et al. 1986, 1988) predicts velocity at time t by a normalized version of

~Pt =

N∑

i=1

yit
~Di, (3)

where ~Di is the unit-magnitude vector whose direction maximizes λ̂i. Note that the particular forms of

Eqs.1, 2, and 3 were chosen for their simplicity in this introduction. Alternatives which may be more

appropriate are discussed later.

Spike sorting is a difficult task, as evidenced by the large body of literature (For reviews see Lewicki,

1998; Brown et al. 2004). The signal collected at an electrode is a mixture of activities from different

neurons, corrupted by noise. Spike sorting consists of finding out how many neurons contribute to the

recorded data and determining which neurons produced which spikes. By and large, spike sorting papers

focus on two broad problems, feature selection and clustering techniques. Features can be raw waveform

measurements or projections on lower dimensional spaces, e.g. projections in PCA subspaces. Clustering

techniques are many and range from simple nonparametric nearest-neighbors methods to sophisticated

mixture model based clustering (Shoham et al. 2003). The former usually yield hard clusters, while

the latter yield soft clusters. Some methods (Fee et al. 1996, Pouzat et al. 2004) include, more or less

formally, additional information such as refractory periods and non-stationarity of waveforms.

1Spike counts in larger time bins would normally be used in Eq.1. We omitted this step because it is not crucial to the

development of ideas in the introduction and to avoid excess notation.
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Figure 2: Proposed EST encoding/decoding paradigm. Both encoding and decoding use directly as

inputs the electrodes’ spike trains (ESTs) z. Spike sorting is avoided completely.

Despite significant improvements, spike sorting remains a lengthy and imperfect process (Harris et al.

2000). For example, it is difficult to classify spikes when waveform measurements clusters overlap and to

detect when several neurons spiked together. These and other problems are exacerbated in the low signal

to noise ratio (SNR) case, when waveforms and noise have similar amplitudes and noise can deform the

recorded waveforms. These problems are severe enough that noisy electrodes are often abandoned even

though they might be recording tuned neurons. The computational effort required for good spike sorting

is of particular concern in the context of neural prostheses, which we had in mind in developing this work.

Indeed for a prosthetic device to be operated by a human in real time, a prohibitively high data rate is

required to transmit raw neuronal signals from a chronically implanted device in the brain for the purpose

of spike sorting, which is beyond the capability of miniature battery-powered wireless links. Therefore

spike sorting may have to be done directly in the brain by a small chip, whose computing power will

likely be too limited to allow use of the most accurate spike sorting algorithms. To complicate matters,

chronically implanted recording devices cannot be placed strategically to minimize noise, so that low

SNR can be expected. Electrodes might also shift over time and thus record spike trains from different

neurons, which may in turn require regular adjustment of the spike sorter parameters.

The purpose of this paper is to propose a spike sorting-free encoding/decoding paradigm, which is sta-

tistically as efficient as the traditional paradigm, even in the low SNR case. Fig.2 summarizes what we

also refer to as the direct method, because it takes directly as inputs the recorded ESTs rather than the

NSTs. Avoiding spike sorting begins with the observation that, with all firing rates expressed in spikes

per milliseconds, the firing rate κ of an electrode is related to the firing rates λi of the I neurons it

records:

κ(~v; Θ) = 1−

I∏

i=1

(1− λi (~v; θi)) , (4)

where Θ = (θi, i = 1, . . . , I) is the combined vector of tuning curve parameters.
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Eq.4 was obtained by writing the probability of detecting one spike as one minus the probability that no

neuron spiked, since a spike will be detected at the electrode at time t if and only if at least one neuron

spiked at t. Eq.4 implies that the EST z contains information about each λi(~v; θi), with which θi can be

estimated. Indeed, regressing ~v on z according to

zt = κ(~vt; Θ) + εt, t = 1, . . . , T, (5)

yields an estimate Θ̂ = (θ̂i, i = 1, . . . , I), which in turn provides estimates λ̂i = λi(~v, θ̂i). The NSTs are

not needed to obtain estimated tuning curves. Note that unidentifiabilities might arise from estimating

λi(~v; θi) from Eq.5. Also, the regressions in Eqs.1 and 5 usually require either spike counts in larger time

bins or use of the binary models given later by Eqs.11 and 12. To keep the introduction simple and to

avoid excess notation, we defer the treatment of these issues to the next section.

Eq.4 also provides the link between the observed EST z and unobserved NSTs yi which allows us to

bypass spike sorting for decoding. Given that a spike is detected at the electrode at time t (zt = 1), the

probability that neuron i produced that spike is λi(~vt)/κ(~vt), so that the expectation of yi at time t,

given zt, is

eit = E(yit | zt) = zt

λi (~vt; θi)

κ(~vt; Θ)
, t = 0, . . . , T. (6)

Note that an electrode that records just one neuron has eit = yit, since eit reduces to zt in Eq.6, while

spike sorting would yield yit = zt. We avoid spike sorting for decoding by using the conditional expected

NSTs in Eq.6 in place of the NSTs to obtain velocity predictions. For example, we replace the population

vector in Eq.3 by

~Pt =

N∑

i=1

eit
~Di. (7)

The principles of direct decoding in Fig.2 are conceptually straightforward. In practice however, regres-

sions that arise from mixtures like κ(~v; Θ) in Eq.5 are known to be difficult to fit. Below, we develop

an exact expectation EM algorithm (Dempster et al. 1977) that is conceptually simple and leads to an

easy-to-implement procedure amenable to any statistical package. It is also computationally fast com-

pared to spike sorting. To investigate the use of Eq.6 in place of NSTs, we focus on population vector

and maximum likelihood velocity predictions to demonstrate that our proposed paradigm applies across

decoding methods. We do not consider dynamic Bayesian decoding algorithms because they would only

add unnecessary detail and complexity. Based on analytical results and on an extensive simulation study,

we demonstrate that our paradigm is comparable to, and sometimes more efficient than, the traditional

approach based on well-isolated neurons, and that it remains efficient even when all electrodes are severely

corrupted by noise, a situation that would render spike sorting particularly difficult.

2 Methods

We divided this section into four subsections. Sections 2.1 and 2.2 develop the algorithms for spike

sorting-free encoding and decoding respectively, where encoding refers to the estimation of the neurons’

tuning curves, while decoding refers to velocity prediction. One important feature of our method is that

it separates noise and real spikes. Despite its importance, for clarity we delay the discussion of the low

SNR case to Section 2.3. Section 2.4 describes our simulation study.
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2.1 Spike sorting free encoding

We focus on one representative electrode and denote by I the number of neurons it records. I is usually

obtained as a byproduct of spike sorting. We propose a spike sorting-free alternative later and assume

until then that I is known.

Our task is to fit a regression like Eq.5 to obtain an estimate of Θ, which in turn provides estimates of

the tuning curves, λ̂i = λ(~v; θ̂i). Maximum likelihood (ML) estimators are attractive because they make

the most efficient use of the data. See for example Kass, Ventura, and Brown (2005). The ML estimator

Θ̂ is the value of Θ that maximizes the likelihood function

L(Θ) = p(z = (zt, t = 1, . . . , T ); Θ) =
T∏

t=1

p(zt; Θ), (8)

where L(Θ) is defined as the joint distribution of the observed data, here the EST z, and p(zt; Θ) is the

probability distribution of a spike occurring at t, which is specified below in Eq.12. The reduction of

Eq.8 to the product over time bins of the marginal distributions of zt is practically attractive because it

allows us to process each time bin separately. It does not imply that z follows a Poisson process. Indeed,

dependences of spiking probability on the past could be built into the firing rates, for example by letting

λi depend on the time elapsed since previous spikes to account for refractory periods. See for example

Kass and Ventura (2001).

Because z has for its firing rate the mixture κ(~v; Θ) in Eq.4, its distribution in Eq.8 also depends on

κ(~v; Θ). Likelihoods that arise from such mixtures are well-known to be difficult to optimize, and a

latent variable approach is often preferred. We use as latent variables the identity of every combination

of neurons that could have produced a spike at the electrode and use an EM algorithm (Dempster et

al. 1977) to optimize L(Θ). Hence, we associate with a spike at t the unobserved I-dimensional binary

latent vector xt = (y1t, . . . yIt), where yi = (yit, t = 1, . . . , T ) is the NST of neuron i. The NSTs are

usually inferred by spike sorting. Here, they remain unknown. When zt = 0 (no spike was recorded at

t), xt is a vector of zeros (no neuron spiked). When zt = 1, all we know is that xt is not identically zero,

and we let X denote the set of (2I − 1) distinct values xt can take, which give all possible subsets of the

I neurons spiking approximately together to produce a spike at t. In statistical jargon (z,x) is a latent

marked point process with x as the unobserved marking variable.

Suppose that Θ(k) is the current parameter value and that we want to update it to Θ(k+1), with the

eventual aim of reaching the ML estimator Θ̂. The EM algorithm is based on the following inequality;

log L (Θ)− log L
(
Θ(k)

)
≥

∑

x∈X

log p(x, z; Θ)p
(
x | z; Θ(k)

)
−
∑

x∈X

log p(x, z; Θ(k))p
(
x | z; Θ(k)

)

= E
(
log p(X, z; Θ) | z; Θ(k)

)
−E

(
log p(X, z; Θ(k)) | z; Θ(k)

)

≡ Q
(
Θ; Θ(k)

)
−Q

(
Θ(k); Θ(k)

)
, (9)

where X denotes the latent random vector that takes values x ∈ X with probabilities p (x | z; Θ), the

conditional distribution of x given the EST z, and E calculates the expectation with respect to p (x | z; Θ)

of what is typically called the distribution of the complete data, p(x, z; Θ). Some intuition is given below.

It can be further shown that

max
Θ

Q
(
Θ; Θ(k)

)
≥ Q

(
Θ(k); Θ(k)

)
, (10)
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so that if Θ(k+1) denotes the value that maximizes Q
(
Θ; Θ(k)

)
, then Eq.10 together with Eq.9 imply

L
(
Θ(k+1)

)
≥ L

(
Θ(k)

)
. The EM algorithm amounts to iteratively maximizing Q

(
Θ; Θ(k)

)
, which by

Eq.10 must increase Q monotonically, until convergence to the maximum likelihood.

For an intuitive interpretation, consider the original aim: we want to maximize the likelihood L(Θ) =

p(z; Θ), or log-likelihood log L(Θ). Had we observed the latent variables x, we would instead maximize

the complete data log likelihood log Lcomplete(Θ) = log p(x, z; Θ), since x and z together contain at least

as much information about Θ than z does alone. But since x has not been observed, the EM trick consists

of replacing x by p (x | z; Θ) in log Lcomplete(Θ), where p (x | z; Θ) is the distribution of values that x

could have taken to give rise to the EST z we observed. This replacement amounts to calculating Q,

the expectation of log Lcomplete(Θ) with respect to x, given z. A nice geometric interpretation is also

provided by Neal and Hinton, 1998.

To calculate Q we need p(z,x; Θ) and p(x | z; Θ). We now derive these distributions. Because zt and

yit are binary variables, natural statistical models to describe their variations are Bernoulli distributions

with probabilities of a spike λi(~vt; θi) and κ(~vt; Θ) respectively, that is

p(yit; θi) = [λi(~vt; θi)]
yit [1− λi(~vt; θi)]

1−yit , yit = 0, 1, (11)

and

p(zt; Θ) = [κ(~vt; Θ)]zt [1− κ(~vt; Θ)]1−zt , zt = 0, 1. (12)

Note that Eqs.11 and 12 give complete specifications of the regressions in Eqs.1 and 5. As for the joint

distribution of the latent variable xt, it can be reduced to the product of the marginals

p(xt; Θ) =

I∏

i=1

p(yit; θi), (13)

with p(yit; θi) given by Eq.11, provided we assume that the neurons are independent. Approaches for the

dependent case are considered in the discussion section. Now, just as with p(z; Θ) in Eq.8, we can reduce

p(z,x; Θ) and p(x | z; Θ) to the product over time bins of the marginals,

p(z,x; Θ) =

T∏

t=1

p(zt, xt; Θ) and p(x | z; Θ) =

T∏

t=1

p(xt | zt; Θ).

Considering first the complete data distribution, we use basic laws of probabilities to write

p(zt, xt; Θ) = p(zt | xt; Θ) p(xt; Θ).

Because a spike is recorded at the electrode if and only if at least one neuron spiked, zt = 1 if and only

if yit = 1 for some i, so that p(zt | xt; Θ) reduces trivially: if xt is a vector of zeros, then zt = 0 with

probability 1, otherwise zt = 1 with probability 1. Hence, the distribution of the complete data is

p(zt, xt; Θ) = I{xt consistent with zt}
p(xt; Θ), (14)

where p(xt; Θ) is given by Eq.13 and IA is an indicator variable that takes value one if A is true, and zero

otherwise. To derive p(xt | zt; Θ) we first treat the trivial case: given zt = 0 (no spike at t), then xt = 0

(no neuron spiked) with probability one. Given zt = 1, the probability that xt = 0 is zero. Otherwise, if

zt = 1 and xt is not identically zero,

p(xt | zt = 1; Θ) = I{xt consistent with zt = 1}
p(xt, zt = 1; Θ)

p(zt = 1; Θ)
,
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with the denominator given by the Bernoulli distribution in Eq.12. Because zt = 1 is implied by xt not

identically zero, dropping zt = 1 preserves the probability in the numerator. Putting results together we

have

p(xt | zt = 1; Θ) = I{xt consistent with zt = 1}
p(xt; Θ)

κ(vt; Θ)
(15)

with p(xt; Θ) in Eq.13 and κ(vt; Θ) the firing rate induced by the neurons at the electrode in Eq.4.

Although we neither observed xt, nor inferred it by spike sorting, we were able to derive its distribution

given the observed EST zt.

With p(z,x; Θ) and p(x | z; Θ), we can proceed with the EM algorithm. We first use Eqs.13 and 14 to

rewrite Q
(
Θ, Θ̂(k)

)
in Eq.9 as

Q
(
Θ, Θ̂(k)

)
= E

(
log

(
I∏

i=1

p(Yi; θi)

)
| z; Θ̂(k)

)
(16)

=
I∑

i=1

E
(
log p(Yi; θi) | z; θ

(k)
i

)
(17)

=

I∑

i=1

Qi

(
θi, θ̂

(k)
i

)
, (18)

which shows that maximizing Q with respect to Θ is equivalent to maximizing each Qi with respect to

the respective θi. This is easy to do, once we recognize that p(Yi; θi) in Eq.17 is the distribution of the

NST of neuron i, that is the likelihood we would maximize to estimate θi, if yi has been made available

via spike sorting. In other words, if the NST yi were known, the value of θi that maximizes Qi would

be the ML estimator θ̂i obtained by regressing yi on ~v as in Eq.1. Because yi is unobserved, the EM

algorithm requires that we use instead its expectation, E
(
Yi | z; Θ̂

(k)
)
, given the EST z and current

value of the parameter Θ(k). Given zt = 0, we have trivially

E
(
Yit | zt = 0; Θ̂(k)

)
= 0. (19)

Given zt = 1, Yit is Bernoulli with expectation

E
(
Yit | zt = 1; Θ̂(k)

)
= P

(
Yit = 1 | zt = 1; Θ̂(k)

)
=

∑

xt:yit=1

P
(
Xt = xt | zt = 1; Θ̂(k)

)
, (20)

with probabilities in the summand given by Eq.15, and summation over the 2I−1 values of xt = (y1t, . . . , yIt)

that have ith component yit = 1.

We can now give a version of the EM algorithm specifically tailored to our goal of fitting the neuron’s

tuning curves without spike sorting, which we refer to as the EST encoding algorithm. It is an exact

expectation EM rather than the most common stochastic EM; it is computationally very fast.
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EST encoding algorithm

Input: The EST z

Initialize Θ = Θ(k); k = 0

(E-step) Compute the expected spike train for neuron i, i = 1, . . . , I

e
(k)
i = E

(
Yi | z;Θ

(k)
)

(21)

using Eqs.19 and 20.

(M-step) Regress e
(k)
i on ~v to obtain the ML estimator θ̂

(k+1)
i , where θi parametrizes the tuning

function λi(~v, θi) of neuron i.

Let k ← k + 1 and iterate until convergence

2.1.1 Determining the number of neurons recorded by the electrodes

So far we have concentrated on one representative electrode, and have assumed that it records I neurons;

I is usually known as a byproduct of spike sorting. Here we propose a spike sorting free alternative that

uses classic results of likelihood theory.

For a fixed number of neurons I , the EST encoding algorithm yields the MLE Θ̂, the value that maximizes

L(Θ). As we increase I , L(Θ̂) also increases. This is well known: the larger the model is, the better it fits

the data. Therefore L(Θ̂) cannot be used as a criterion for model selection since the largest model would

always be selected. This is a common problem to which several solutions exist. The likelihood ratio test

(LRT) allows “formal” comparisons of two nested models, by capping at a prespecified α% the probability

of rejecting the small model by mistake. Two models are nested if one is a particular case of the other; for

example, the two-neuron model Θ = (θ1, θ2) is a special case of the three-neuron model Θ = (θ1, θ2, θ3)

when θ3 = 0. The Akaike’s information criterion (AIC) and the Bayesian inference criterion (BIC)

allow comparisons of models that are not necessarily nested. Both consist of assigning a score to each

model of the form “goodness of fit” minus “complexity”, specifically AIC(Θ) = log L(Θ̂) − dim(Θ) and

BIC(Θ) = log L(Θ̂)− dim(Θ)
2 log n. The AIC and BIC do not control the probabilities of making mistakes.

Instead, the model with highest AIC minimizes the expected Kullback-Leibler distance between true and

chosen models, while the model with highest BIC has highest posterior probability, when a uniform prior

on the space of models considered is used. The usual procedure for AIC and BIC is to choose a range

of values for I, obtain scores for all models, and retain the model with the highest score. Instead we

adopt a greedier procedure that gives the same results while saving time; for each electrode, we proceed

sequentially, testing first the “no neuron” versus the one neuron model, the one versus the two neurons

model, and so on until the larger model provides no significant improvement over the smaller. The

procedure follows.
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Determining the number of neurons

Initialize: I = 0

- Let Θsmall be the model with I neurons, and Θbig the model with I +1 neurons, with MLEs Θ̂small

and Θ̂big obtained by the EST encoding algorithm.

- Reject the model with I neurons in favor of the model with I + 1 neurons if

log L(Θ̂big)− log L(Θ̂small) > Critical value

with

Critical value =





(LRT) χ2
q,(1−α)/2

(AIC) q

(BIC) (q/2) log n

where q = dim(Θbig)−dim(Θsmall), χ2
q,(1−α) is the (1−α)th quantile of the Chi-square distribution

with q degrees of freedom, and n is the size of the data.

Let I ← I + 1 and iterate until the smaller model is retained

Although each procedure has a different theoretical justification, in practice they only differ in the amount

of evidence required to favor large over small models. The larger the critical value is, the more evidence

is needed to favor the large model, so that AIC yields larger models than BIC.

2.1.2 Identifiability

In simplified terms, the parameters of the tuning curves, θi, are unidentifiable if they cannot be estimated

uniquely. In our application, identifiability issues can arise for two reasons, data identifiability and model

identifiability.

Model unidentifiabilities happen when neurons have overlapping tuning curves, because it is difficult

to untangle neurons based only on what is observed at the electrode. This situation is analogous to

overlapping waveform-feature clusters in the spike sorting context. In that case, it may be that several

values of Θ maximize the likelihood L(Θ); one of these values corresponds to the actual neurons recorded

by the electrode, if the spike-rate models are not too badly mis-specified, while the others correspond to

imaginary neurons whose combined activity is not distinguishable from that of the actual neurons. The

particular estimate of Θ we obtain depends on the initial values; the same would happen with any other

likelihood maximization procedure. This type of unidentifiability is likely to happen often in practice.

However, the simulation study clearly shows that this does not affect the quality of decoding. It makes

sense too: if we use imaginary neurons whose combined activity is the same as that of the actual neurons,

none of the information collected at the electrode is lost. For example, if all neurons have the same tuning

curves, our algorithm will detect only one imaginary neuron, with firing rate the aggregate of the actual

neurons’ firing rates; this neuron contains all the information about movement variables the electrode

provides.

Data unidentifiability has to do with how the true tuning curves of the neurons, λ∗
i say, relate to the rate
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they induce at the electrode, κ∗ = 1 −
∏

i(1 − λ∗
i ) . By true we refer to the unknown mechanism that

generates the spike trains, rather than to a model like Eq.2 we fit to them, which is our best attempt at

capturing the variations we observe. If λ∗
i and κ∗ have the same functional form, then it is impossible to

distinguish the activity of the electrode from the activity of one, or combined activities of two or more

neurons. This is the case, for example, if all λ∗
i are constant. But if λ∗

i = θi||v||, say, with ||v|| the velocity

magnitude, then κ∗ is a polynomial in ||v|| of order I , so that the activity recorded at the electrode is

qualitatively different from the activity of single neurons, and an algorithm like ours can detangle neurons

from electrodes. Given the non-linear relationship between κ∗ and λ∗
i , it is hard to imagine situations

other than the trivial constant firing rate case that would yield data unidentifiabilities2. But because λ∗
i

is the firing rate per millisecond, it is small enough that κ∗ might be well approximated by κ∗ ≡
∑

λ∗
i ,

so that λ∗
i linear in movement variables could yield a κ∗ that is close to linear in the same variables; this

includes the commonly used cosine tuning. However our simulation study shows that even exactly cosine

neurons do not cause our algorithm to degrade.

2.2 Spike sorting free decoding

Now that estimated tuning curves λ̂i(~v) = λ(~v; θ̂i) are available, we turn to velocity predictions from ESTs.

We previously focused on one representative electrode. Here we work with a population of J electrodes,

from which N neurons are recorded. The EST of electrode j is denoted by zj and its estimated firing

rate by κ̂j(~v) = κj(~v; Θ̂) = 1−
∏

i∈Ij
(1− λ̂i(~v)), where Ij is the set of indices of the neurons recorded by

electrode j, while the subscript ji identifies the electrode that records neuron i.

The population vector (PV) (Georgopoulos et al., 1986) predicts velocity at time t by a normalized version

of

~P PV
t =

N∑

i=1

yit
~Di, (22)

a linear combination of the neurons’ preferred directions (PD) ~Di and their spike counts yit, where ~Di is

the unit-magnitude vector whose direction maximizes λ̂i(~v). We propose two estimators related to Eq.22

that do not require that the NSTs yi be known. The naive EST prediction,

~P PV
Ut =

J∑

j=1

zjt
~Ej (23)

is the usual PV prediction obtained by treating the electrodes as if they were neurons with tuning curves

κj(~v). The subscript “U” stands for unsorted and ~Ej is the unit-magnitude vector whose direction

maximizes κ̂j(~v). In the rest of the paper we refer to ~PU simply as the naive prediction. The (non-naive)

EST prediction

~P PV
Et =

N∑

i=1

eit
~Di (24)

has the same form as Eq.22, but with spike counts yit replaced by their conditional expectations

eit = E(yit | zjit) = zjit

λ̂i (~vt)

κ̂ji
(~vt)

, (25)

2Solutions to this problem may exist within group theory. A rigorous proof seems too difficult to attempt here.
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defined earlier in Eq.6. For single-neuron electrodes, eit = yit. Otherwise, an electrode that records

several neurons has ∑

i∈Ij

eit ≥ zjt,

which mirrors the inequality we would get from spike sorted data,
∑

i∈Ij
yit ≥ zjt. Both inequalities are

consistent with κj(~v) ≤
∑

i∈Ij
λi (~v) and account for neurons spiking together. Note that Eqs.25 and 21

appear related, but are equal only when (i) the EST encoding algorithm has converged so that Θ(k) = Θ̂

in Eq.21 and (ii) they are both conditional on the ESTs used to obtain Θ̂. We show in the next section

that ~P PV
E yields the same mean prediction as ~P PV , but that its variance is smaller.

Maximum likelihood (ML) methods rely on a statistical model that specifies the probability distribution

of the spike trains, and the ML prediction is the value that maximizes their joint distribution, that is the

likelihood. For example, if we assume that the spike counts yit have Poisson distributions with means

the firing rates λi(~vt), then, assuming that the neurons are independent, the likelihood is

L(~v) =

N∏

i=1

[λi(~v)]yit e−λi(~v)

yit!
,

and the ML estimate of velocity at t is

~PML
t = argmax

~v

L(~v). (26)

Just as with PV predictions, we define two alternative ML predictions that do not require the spike sorted

data. They are the naive prediction

~PML
Ut = argmax

~v

J∏

j=1

[κj(~v)]zjt e−κj(~v)

zjt!
, (27)

which treats electrodes as if they were neurons, and the EST prediction

~PML
Et = argmax

~v

N∏

i=1

[λi(~v)]eiteλi(~v)

eit!
, (28)

based on the expected NSTs in Eq.25. We wrote the right hand side of Eq.27 as a product over the

electrodes because, under the assumption that the neurons are independent and that each neuron is

recorded by only one electrode, the ESTs zj are also independent.

The predictions in Eqs.24 and 28 are straightforward in principle, but they assume that the conditional

expected spike counts in Eq.25 are known. For single-neuron electrodes, we have trivially eit = zjit, the

observed electrode’s spike counts. Otherwise eit is a function of the very velocity ~vt we seek to predict.

The obvious solution is to replace ~vt in Eq.25 with an estimate, which we denote by v̂t to differentiate

it from the velocity predictions we have denoted so far by ~P , with various sub- and sup-scripts. Several

options are available. We consider

v̂t = k−1
k−1∑

i=0

~PU(t−i), (29)

the average of the current and (k − 1) previous naive predictions, and

v̂t = (krecur)−1
krecur∑

i=1

~PE(t−i), (30)
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Figure 3: Proposed EST predictions. (A) ~PE uses the naive prediction ~PU to calculate the conditional

expected NSTs ei in Eq.25. (B) Recursive prediction ~P recur
E uses ~PU for the first decoding time only. For

t > 0, conditional expected NSTs are calculated based on past predictions ~P recur
E .

the average of the krecur previous EST predictions. Replacing ~vt by Eqs.29 or 30 makes sense only under

the assumption that ~vt evolves in time with some degree of smoothness, as is the case for real movements.

Use of Eq.30 produces a purely recursive algorithm, since past predictions are used to calculate eit, which

are in turn used to produce the next prediction. We therefore refer to Eq.28 together with Eq.30 as the

recursive EST prediction ~P recur
Et . Fig.3 gives a flowchart summary of our proposed EST predictions, valid

for PV and ML methods.

The price to pay for replacing ~vt in Eq.25 by an estimate is bias. Eqs.29 and 30 yield increasingly

biased estimates of ~vt with increasing values of k and krecur, which in turn induces bias in eit, so that

eit = E(yit | zjit) no longer holds exactly. This puts into question the use of eit in place of yit to make

predictions. The only bias free scenario happens with use of Eq.29 with k = 1, since ~PUt (Eqs.23 and

27) is unbiased for ~vt. But as we show later, ~PUt has large variance, so that the eit have large variances

too, which is bound to degrade the efficiency of ~PE . We therefore need to investigate values of the bias

parameters k and krecur that strike a good balance between small variability and small bias. This balance

is also a function of the proportion of single-neuron electrodes. Indeed, if all electrodes are single-neuron,
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then eit = yit = zjit for all i, and the choice of estimate of ~vt in Eq.25 is irrelevant since naive and EST

predictions reduce to the usual NST predictions (Eqs.22 and 26). But if too few electrodes record only

one neuron, the expected counts might be too variable (if Eq.29 with k = 1 is used) or too biased (if

larger k or krecur are used) to yield efficient movement predictions.

At this point we have proposed a complete spike sorting free method for encoding and decoding movement.

Our next step is to evaluate how good the method is. Efficiency comparisons between proposed and

traditional approaches are difficult, except for PV predictions under simplifying assumptions. We report

this in the next section. We subsequently describe a simulation study designed to compare the efficiencies

of PV and ML predictions under general conditions.

2.2.1 Analytical comparisons of efficiencies of PV predictions

We compare the PV predictions in Eqs.22, 23 and 24, and show that, under the simplifying assumptions

specified below, ~P PV
U is less efficient than the traditional NST prediction ~P PV , while ~P PV

E is more efficient.

This suggests that spike sorting can be avoided without loss of efficiency.

For clarity, we drop the time subscript t and the superscript PV, since we discuss only PV predictions.

To make analytical calculations possible, we simplify the relationships between electrodes and neurons’

spike counts and firing rates, and replace Eq.4 by

κj(~v) =
∑

i∈Ij

λi(~v), (31)

which effectively assumes that neurons recorded at an electrode do not spike together. This further

implies

zjt =
∑

i∈Ij

yit. (32)

This is not too strong a simplification given that the firing rates are fairly low. We also assume that

~vt is known in Eq.25. The more realistic setting where ~vt is replaced by Eq.29 or 30 is treated later by

simulation.

It is easy to show that ~P and ~PE have the same expectation

E(~P ) = E(~PE) =
N∑

i=1

λi(~v) ~Di,

which means that they yield the same movement predictions on average. Details are in the appendix.

The variance-covariance matrices of ~P and ~PE cannot be compared without imposing any constraint on

σ2
i = Var(yi). It is not too restrictive to assume that Var(yi) = α λi(~v), α ∈ R+, which is to say that the

variance of spike counts is proportional to their means. This happens, for example, when spike counts are

over or under dispersed Poisson random variables. The case α = 1 corresponds to Poisson spike trains.

Under this assumption, we show in the appendix that

Var-Cov(~PE) ≤ Var-Cov(~P ).

That is, traditional NST prediction ~P and proposed EST prediction ~PE have the same expectation, but
~PE has variances and covariances always smaller than those of ~P . This result makes sense; ~P and ~PE are
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both calculated given the observed electrodes’ spike counts z, but ~PE uses ei, the expectation of yi given

zji
, which removes from ~PE the variability of yi about its expectation.

Although more intuitive, it is also more difficult to show that ~PU is inferior to ~P , because the two

predictions are not equal on average, either in direction or in magnitude. To see this, consider electrode

j; its contribution to ~PU is in the direction of ~Ej , while its contribution to ~P or ~PE is in the direction

of
∑

i∈Ij

λi
~Di; these two directions are unlikely to be equal. Rather than an analytical comparison, we

provide an intuitive argument, and for illustrative purposes assume that neurons are cosine with rates

λi(v) = ki + mi~v · ~Di,

where ki ≥ 0, mi ≥ 0 and ~Di is its unit-length PD. From Eq.31, the electrode that records these neurons

is also approximately cosine with rate

κj(~v) = Kj + Mj
~Ej .~v,

where Kj =
∑

i∈Ij

ki, ~Ej =
∑

i∈Ij

mi
~Di/Mj is the unit-length electrode’s PD, and Mj =‖

∑
i∈Ij

mi
~Di ‖.

We compare ~P and ~PU based on the idea that they can be considered predictions from different sets of

neurons, and that better neurons yield better predictions. Good neurons are typically well modulated.

Taking as a measure of modulation the difference between maximum and minimum firing rates, the

modulations of neuron i and electrode j are 2mi ‖v‖ and 2Mj‖v‖ respectively. Because the PDs are unit

vectors, Cauchy-Schwartz inequality yields Mj = ‖
∑

i∈Ij

mi
~Di‖ ≤

∑
i∈Ij

mi, with equality if and only if all

~Di’s point in the same direction. This shows that the modulation of any electrode is less than the sum of

the modulations of the neurons it records, unless they all have the same PD. Although this statement was

proved for cosine tuned neurons, it is likely to apply generally. In the appendix, we provide an additional

argument, based on a movement prediction perspective, that helps explain why decoding from isolated

neurons is better than decoding from electrodes.

We conclude from this section that the proposed EST prediction ~P PV
E is superior to the traditional PV

prediction, under minimal assumptions about the variances of the spike counts. On the other hand,

intuitive arguments suggest that the naive prediction ~P PV
U is not as efficient. These results were obtained

assuming that ~vt was know in Eq.25. In practice however, ei will depend on an estimate of ~vt (Eqs.29 or

30), which will increase either its bias, its variance, or both, so some efficiency will be lost. We investigate

under which conditions ~P PV
E remains acceptably efficient in the simulation study.

2.3 The low signal to noise ratio case

Imagine that an electrode records tuned neurons, but that the SNR is low, so that waveforms and noise

have comparable amplitudes. Setting the threshold high means that many true spikes will be missed,

while setting the threshold lower means that more true spikes, but also more “noise spikes”, will be

detected. It may then be difficult to separate waveforms from noise, in which case spike sorting might

prove too difficult and the electrode discarded. This is a common problem.

Our method handles the low SNR case seamlessly, by treating noise spikes as if they were produced by

a “noise” neuron, whose firing rate is a constant with respect to movement variables. All we have to do
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is include a flat tuning curve λi(~v; θi) = θi0 to be fitted to the electrode in the EST encoding algorithm.

Our algorithm is designed to handle joint spiking so that real spikes will be retrieved even if they occur

jointly with noise. This is illustrated in the simulation study. Note that fitting a noise neuron can be

done either if the ESTs are contaminated by noise or not. Indeed we can test the statistical significance

of noise, testing the model with just a noise neuron (one parameter θ0i) versus the model with one neuron

(three parameters with use of firing rates in Eq.34), then the models with one neuron versus one neuron

and noise, the models with one neuron and noise versus two neurons, etc.

In the decoding stage, noise neurons do not contribute to velocity predictions. To see this, consider for

example the ML prediction in Eq.28. Since the firing rates of noise neurons do not depend on ~v, the

likelihood can be decomposed into the product of noise and other neurons, so that the velocity prediction

is

~PML
Et = argmax

~v

(
∏

noise neurons

λeit

i eλi

eit!

∏

tuned neurons

[λi(~v)]eiteλi(~v)

eit!

)

= argmax
~v

(
∏

tuned neurons

[λi(~v)]eiteλi(~v)

eit!

)
.

It does not depend on noise.

2.4 Simulation study

Earlier, we provided some analytical results to compare the efficiencies of PV predictions based on tra-

ditional and proposed paradigms. ML predictions do not allow for tractable analytical results, so we

compare paradigms based on a simulation study similar to Brockwell et al. (2004). We simulated spike

trains for N neurons, assuming the modified cosine tuning functions

λ∗
i (~vt) = g(ki + mi~vt · ~Di), (33)

where ~vt is the value of the two-dimensional velocity at time t, ki and mi are positive constants determining

base firing rate and directional sensitivity, and ~Di is the unit-length PD. The function g was used to

sharpen tuning curves more or less. We used g(x) = xa with a < 1 producing tuning curves broader than

cosine, and a > 1 sharpening them more; g(x) = exp(x) was also used to produce sharp tuning. Each

neuron was assigned a random PD ~Di and random values of ki and mi, so that its minimum firing rate

was positive and maximal firing rate between 80 and 100 Hertz. These rates are roughly consistent with

M1 data. Given the velocities, the spike counts were taken to have Poisson distributions with mean in

Eq.33. To create ESTs, we randomly assigned the N neurons onto J electrodes so that all electrodes

would record at least one neuron. To create the low SNR case we added noise spikes at the rate of 100

Hz to all electrodes. Because the maximum firing rate of all neurons was set between 80 and 100 Hz,

many electrodes recorded more noise spikes than real spikes.

In implementing ML decoding, we assumed Poisson spike trains with exponential cosine firing rate

λi(~v; θi) = exp(θ0i + θ1ivx + θ2ivy). (34)

Unless g = exp in Eq.33, the model we fit to the data is different from the generative model, a realistic

scenario since in real applications we are unlikely to use the “true” model. Parameters θi = (θ0i, θ1i, θ2i)
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in Eq.34 were estimated by ML based on data from the generative model in Eq.33, obtained by doing

four loops of the velocity trajectory specified below. The data used to fit Eq.34 were then discarded, and

the fitted firing rates λ̂i used for movement predictions based on fresh ESTs from the generative model.

Naive velocity predictions prescribe that we use κ̂j(~v) for the electrodes’ estimated firing rates. This gave

substantially biased predictions. To understand why, imagine an electrode that records two neurons with

PDs 0 and 180 degrees. Observing a large electrode spike count suggests that ~v is near 0 or 180 degrees.

A maximum likelihood approach forces us to choose one of the two values, which does not summarize the

information adequately. A better summary would be the conditional distribution of ~v given the observed

spike count and firing rates, which is the output of Bayesian decoding algorithms. Dynamic Bayesian

decoding is treated in a forthcoming publication. To circumvent this problem here, we estimated the

electrodes’ firing rates by fitting the model in Eq.34 to the ESTs.

Two velocity trajectories were used. For the decoding study we assumed that the two-dimensional velocity

~vt traces out the path in Fig.7 over the course of 12 s, with path defined by xt = 6 cos (πt/6), yt = 2

sin (πt/2), for t ∈ [0, 12], and velocity defined by the respective derivatives. To illustrate the properties

of the EST encoding algorithm, we used a simpler circular velocity trajectory over the course of the 12

seconds, with path xt = 12 cos (πt/12), yt = 12 sin (πt/12), for t ∈ [0, 12]. For this path the velocity

amplitude remains constant and tuning curves can therefore be displayed as functions of direction on a

circular plot. We found circular plots to be clear and visually appealing.

Simulations were based on independent data sets of N neurons, randomly assigned to J electrodes. We

mainly used N = 80 and J = 40 but other values were considered as needed. The 12 s in the experiment

were divided into 400 time bins of 30 ms, and velocity predictions obtained for each dataset using all

methods. We assess the quality of decoded velocities by the integrated squared error (ISE), defined as

the average over all 400 time bins of the squared difference between decoded and actual velocities. The

ISE is a combined measure of bias and variance. To compare the efficiencies of predictions from ESTs

and NSTs, we calculate, for each dataset, the ratio of the ISEs of EST decoded trajectories over the ISEs

of the NST predictions. An ISE ratio below one indicates that the spike sorting free approach is more

efficient than the traditional approach. Because ISE ratios vary from dataset to dataset, we summarize

their values across many simulated samples using a box plot, which shows the quartiles (25th, 50th and

75th quantiles) as a box, with whiskers extending on each side to the 2.5th and 97.5th quantiles. Box

plots are an effective way to visually compare several distributions.

3 Results

We split this section in two parts. The first illustrates how the EST encoding algorithm works. The

second presents the results of the decoding simulation study.

3.1 Illustrations of the EST encoding algorithm

Consider an electrode that records I = 3 neurons, whose true rates are exponential cosine, λ∗
i (~v) =

exp(ki + mi~v · ~Di) with preferred directions ~Di = 0, 90 and 180 degrees. They are shown as bold dashed

curves in Figs.4BCD. Note that the generative model matches the decoding model of Eq.34, which ensures
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Figure 4: (A) Circular PSTH (PSTH wrapped around the origin) of the EST, with circular spline fit

overlaid; A = arctan(vx/vy) is the direction of the constant magnitude velocity ~v. The spline fit reveals 3

bumps that suggest that 3 or more unimodal neurons are recorded by this electrode. The EST is indeed

the aggregate of I = 3 NSTs simulated from Poisson neurons with rates shown in (B,C,D) as dashed

curves. (B) True firing rates λ∗
i , and rates fitted to the NSTs. (C) True rates and rates estimated by

the EST encoding algorithm. The fits in (B) and (C) are almost identical. (D) First 10 iterations of the

algorithm. The dashed curves are the true rates λ∗
i and the solid curves their current estimates. The

first panel shows starting values, which we took to have PDs equally spaced on [0,2π]. All starting values

(random shapes, sizes, placements) converged to the same solution. (E) Observed EST z, and unobserved

NSTs yi of the 3 neurons. The spike trains shown below each NST are the conditional expected NSTs in

Eq.21 after the EST encoding algorithm has converged.
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Figure 5: (A) Fitted rates (solid curves) obtained by the EST encoding algorithm applied to an elec-

trode that records I = 3 Poisson neurons with rates shown in bold dashed. Because true rates overlap

significantly, true and fitted rates do not match. (B,C) Same as (A), for 2 other random starts of the

algorithm. (D) Firing rate of the electrode. The true rate is in dashed bold. The estimated rates from

panels (A,B,C) are drawn in solid. All rates overlap and so are not distinguishable by the naked eye.

that Fig.4 shows the properties of the EST encoding algorithm without corruption from a bad model

choice. The simple circular velocity path was used to allow for circular graphical displays. Fig.4A shows

a PSTH of the EST, from which we can see three modes, which suggest that the electrode records at least

three unimodal neurons that are tuned to velocity. It is that information our algorithm uses to determine

the number of neurons and their tuning curves. In practice we will not be able to identify neurons with

the naked eye; see, for example, Figs.5 and 6. Fig.4B shows the tuning curves fitted to the NSTs yi, and

Fig.4C the tuning curves obtained by running the EST encoding algorithm on the EST z; the fits are

practically identical. Fig.4D shows the initial values and the first nine iterations of the algorithm. Fig.4E

shows a portion of the EST z, the corresponding portions of the three unobserved NSTs yi, as well as the

conditional expected NSTs ei in Eq.21, calculated after the algorithm converged. We see that ei is close

to yi, although ei is probabilistic in nature and thus contains full and partial spikes. Fig.4E shows that,

although we do not spike sort based on waveform information, the EST encoding algorithm yields spike

sorted trains as a byproduct of encoding. This could be used to improve spike sorting, as mentioned in

the discussion.

In this example, as in all situations where true tuning curves do not overlap much, the EST encoding

algorithm yields fitted tuning curves that are similar to those obtained by the common NST based

procedure. The ideal situation breaks down when tuning curves overlap significantly, as shown in Fig.5.

We simulated the spike train of an electrode recording I = 3 neurons with exponential cosine tuning

curves as above, but more clustered PDs at 45, 90 and 112 degrees. The PSTH of the EST (not shown)

revealed just one bump, while the neuron number testing procedure described earlier estimated the correct

number of neurons. Figs.5ABC show the fitted tuning curves obtained with three random starts of our

algorithm. Although they seldom match the true curves, the maximum log likelihood achieved in all cases

is log L(Θ̂) = −1402, which means that the three solutions shown fit the observed EST equally well. This

is further confirmed visually in Fig.5D, which shows the fitted rate at the electrode, κ̂ = κ(~v, Θ̂), for the

three EM runs, as well as the true κ∗: the four curves are not distinguishable. Fig.5 illustrates what we

called earlier model unidentifiability. We show later in the simulation study that model unidentifiabilities

do not affect decoding efficiency.
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3.1.1 Separating noise from true spikes

Consider an electrode that records one neuron tuned to movement, with tuning curve λ∗ shown in

Fig.6CD, and whose waveform has maximum amplitude normally distributed with mean 3 and variance

1. Assume that the noise on that electrode is normally distributed with mean 0 and variance 1. We set

the threshold at 1, so that a spike is recorded each time the electrode voltage exceeds 1. A noise signal

with the stated characteristics, sampled every millisecond and thresholded at 1 corresponds to a constant

noise spiking rate of 159 Hertz3, also shown in Fig.6C, a much higher rate than that of the neuron; the

proportions of real versus noise spikes is 22% versus 78%. Fig.6A shows a circular PSTH of the EST, from

which it is hard to tell if the electrode records tuned neurons. Fig.6B shows a histogram of the recorded

spikes amplitudes; the real spikes lay below the normal distribution with mean 3 and variance 1 overlaid

on the plot. It would be difficult to spike sort this data based on maximum waveform amplitude. Fig.6D

shows four solutions of the EST encoding algorithm, corresponding to the four clove-shaped initial values

overlaid. The algorithm also converges to the solution in the 2nd panel when we used the true rates as

initial values. Unless we start the algorithm with the correct proportion of noise (about 80%; second

panel), λ̂ does not match the true λ∗. Such model unidentifiabilities were expected since the noise rate

completely overlaps the rate of the neuron (Fig.6C). However all solutions achieve the same maximum

log likelihood, log L(Θ̂) = −2427.5, which means that they fit the noise corrupted EST equally well.

Moreover, λ̂ is approximately proportional to λ∗ in each case, which means that the algorithm estimates

a neuron with the correct qualitative properties, which effect on decoding will be similar to that of the

actual neuron.

Rather than illustrate that noise and spikes can be separated perfectly, Fig.6 suggests that adding a noise

neuron to be fitted separates the tuned from the untuned portions of the EST, the untuned portion being

composed of noise and/or untuned neurons, but potentially also of portions of tuned neurons.

A last comment on Fig.6 concerns joint spiking. The neuron and the noise produced 2205 and 7965 spikes

respectively; on 348 occasions they occurred simultaneously. This makes for a total of 10170 spikes, with

only 9822 detected at the electrode due to joint occurrences. The proportion of the neuron’s spikes

corrupted by noise is a non-negligible 16%; they might be difficult to retrieve via spike sorting. On the

other hand, our algorithm is designed to handle joint spiking. For the solution in the 2nd panel of Fig.6D,

our algorithm retrieved a total of 10159 spikes, close to the actual number (10170), even though its input

EST contained only the 9822 recorded spikes.

3.1.2 Determining the number of neurons

For each electrode, we must determine if it records tuned neurons and if so how many. The procedure

described earlier consists of comparing the increase in log likelihood to AIC, BIC, or LRT critical values,

for increasingly large models, and stop when the increase is no longer significant.

Table 1 gives the maximum log likelihood achieved by fitting I neurons to the data of Fig.4 , for I = 0, . . . 5.

We first determine if the electrode records any neuron that is tuned to movement by comparing the

models with I = 0 and I = 1. The former fits a constant firing rate to the EST, so dim(Θsmall) = 1,

and dim(Θbig) = 3 for the one neuron model in Eq.34; this gives q = dim(Θbig)− dim(Θsmall) = 2. The

3The probability of a spike in a 1 msec bin is Pr(Z > 1) = 0.159 where Z is Normal(0,1).
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Figure 6: (A) Circular PSTH of noise contaminated EST, with circular spline fit overlaid: it is difficult

to see if the electrode records tuned neurons. (B) Electrode voltage amplitudes exceeding the threshold

1. The distribution of amplitudes of the neuron’s waveform is overlaid. 78% of recorded spikes are noise,

and it would be hard to spike sort noise from real spikes. (C) True rates for neuron and noise, with fits

to the NST overlaid (not distinguishable). (D) Estimated neuron tuning curve obtained by applying the

EST encoding algorithm to the noise contaminated EST. Fitted noise rates were not shown for clarity.

The 4 panels correspond to the 4 clove leaf initial values overlaid. Fitted rates do not match the true rate,

but are approximately proportional so they convey similar information about movement parameters.
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I 0 1 2 3 4 5
log L(Θ̂) -1661 -1568 -1442 -1412 -1410 -1409

log L(Θ̂big)− log L(Θ̂small) NA 93 126 30 2 1

Table 1: Maximum log likelihood log L(Θ̂) achieved by fitting I neurons to the EST of the electrode used

for Fig.4. The true number of neurons on this electrode is I = 3.

difference in log likelihood is log L(Θ̂big) − log L(Θ̂small) = (−1568)− (−1661) = 93, which we compare

to χ2
q,(1−α)/2 = 3 for the LRT with significance level α = 5%, q = 2 for AIC, and (q/2) logn = 5.991

for BIC with n = 400, the number of time bins we used to fit the models. The increase in log likelihood

exceeds all critical values by a large amount, leaving no doubt that the electrode is recording at least

one tuned neuron. To determine the number of neurons, the same procedure is applied albeit with q = 3

since the dimension of θ increases by three each time an additional neuron is included in the model. The

corresponding AIC, BIC, and LRT critical values are 3, 8.99, and 3.91 respectively. The maximum log

likelihood increases significantly up to I = 3 neurons, but the increase is not significant when a fourth

neuron is added. We conclude that the electrode records I = 3 neurons, the correct number in this

instance. For the electrode in Fig.5, log L(Θ̂) = -2137, -1464, -1411, -1402, -1402, and -1401 for I = 0 to

I = 5 respectively, from which we conclude that the electrode records I = 3 tuned neurons, the correct

number, despite substantial overlapping of the tuning curves.

3.1.3 Implementation issues

So far we have not discussed implementation issues because they are not central to the ideas in this

paper. However, as with all numerical algorithms, it is important to consider them. The procedure we

have adopted in this paper is as follows.

For clarity and consistency in Section 2, we developed the methodology based on binary spike trains.

However, the theory extends to spike trains more coarsely binned, which is computationally more efficient.

In the implementation of all results we used bins of 30 msecs. To fit I neurons, we took starting values to

be I tuning curves with PDs as spread out as possible, and we declared that the algorithm had converged

when the increase in log likelihood remained smaller than ε = 0.1 for eight consecutive iterations. With

these choices, and using an Intel(R) Pentium(R) 4 with 3.80GHz CPU and 4 Gigs of RAM, the EST

encoding algorithm took an average of 60 or 20 seconds per electrode, depending on whether or not we

fitted a noise neuron to the electrode, and almost half these times with use of ε = 0.2. These timings

are based on many simulations, and turned out to be independent of the total number of neurons and

electrodes. Data driven initial values and better strategies to determine the number of neurons would

accelerate the algorithm further. Decoding can also start before convergence, since estimated tuning

curves are available at all times, and the algorithm can be left to run after convergence to track possible

changes in tuning.

3.2 Decoding a trajectory

So far we have demonstrated that we can assess how many tuned neurons an electrode records, estimate

their tuning curves, and separate noise from true spikes. However we also showed that the estimated

21



tuning curves are not necessarily those of the actual neurons, but can be those of imaginary neurons

whose combined activity is not distinguishable from that of the actual neurons, and that separating noise

from real spikes is more akin to decomposing the EST into tuned and untuned components. These effects

are due to model unidentifiabilities. In this section we show that neither unidentifiabilities nor a high

proportion of noise spikes have much effect on decoding accuracy. To save space, we report efficiency

results for ML decoding only. PV decoding was overall less efficient but gave qualitatively similar results

throughout.

Fig.7 shows ML decoded trajectories based on simulated data sets of N = 80 cosine neurons randomly

assigned to J = 40 electrodes. Panels with a prime letter such as Fig.7A’ show the average prediction

over 100 datasets. Non-primed panels show the prediction for a particular dataset. High and low SNR use

the same datasets, but noise neurons spiking at 100 Hz were added to all electrodes in the low SNR case.

Fig.7A shows the traditional NST prediction summarized in Fig.1. Exponential cosine tuning curves

(Eq.34) were fitted to the NSTs and ML velocity predictions obtained from NSTs (Eq.26). High and low

SNR cases are equivalent if we assume that we were able to spike sort the ESTs perfectly, so we left the

right side of the plot empty. Fig.7B shows the naive prediction (Eq.27) based on treating electrodes as

if they were neurons. Figs.7CD shows a hybrid between traditional and proposed decoding paradigms.

Specifically, tuning curves were fitted to the NSTs, as in Fig.7A, but predictions were obtained from

ESTs, as summarized in Fig.3. Fig.7C is for ~PE and Fig.7D for the recursive prediction ~P recur
E . Finally,

Figs.7EF shows the complete spike sorting free method. Comparing Figs.7EF to 7CD shows the effect of

using imaginary rather than actual neurons.

We first verify from the prime panels that NST and EST predictions estimate the correct trajectory on

average over data sets. The slight deviations are due to the difference between generative (Eq.33) and

fitted models (Eq.34) and to the bias of ~PE and ~P recur
E . The effect is more pronounced in the low SNR

case, because then there are no single-neuron electrodes, so that expected spike counts must be calculated

for all neurons. Focusing now on the non-primed panels, we see that the naive prediction ~PU is poor

and degrades in the high noise case, as expected from the analytical results in Section 2. On the other

hand, ~PE and ~P recur
E compare quite well with the traditional NST prediction, and they are robust to

contamination from noise. Finally, comparison of Figs.7CD and 7EF suggests that decoded trajectories

are similar when tuning curves are estimated from NSTs or ESTs. That is, potential unidentifiability of

tuning curves (or neurons) does not appear to affect the quality of decoding.

Fig.7 provides visual confirmation that our spike sorting free paradigm compares well with the traditional

paradigm, including in the low SNR case when spike sorting would be difficult. To provide a more

quantitative assessment, Fig.8 shows box plots of ISE ratios (RISEs) from 100 simulated datasets of N =

80 neurons randomly assigned to J = 40 electrodes. The successive panels of Fig.8 correspond to neurons

that are increasingly more sharply tuned than cosine neurons, with tuning curve λ∗
i (~v) = (ki +mi~v · ~Di)

a,

a = 0.75, 1, 1.5 and 3 respectively (Eq.33). The same decoding model λi(~v) = exp(θ0i + θ1ivx + θ2ivy)

(Eq.34) was always used. The number of neurons per electrode was determined using BIC and AIC.

The latter was found to give somewhat better efficiencies, so we used AIC for all results shown here. In

estimating the tuning curves via the EST encoding algorithm, we considered the addition or omission of

noise neurons to be fitted to all electrodes. Hence efficiencies for ~PE and ~P recur
E are summarized by two

boxplots (tagged E1–E2, F1–F2) corresponding to these options. Comparing boxes E1 to E2 and F1 to F2

suggests that fitting noise neurons to all electrodes improves decoding efficiency, even when spike trains

contain no noise spikes (high SNR case). However the improvement is minimal when neurons have sharp

tuning curves like λ∗
i (~v) = (ki +mi~v · ~Di)

3. We discuss this further at the end of this section. Henceforth
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Figure 7: Trajectories decoded by maximum likelihood using traditional (Fig.1) and proposed (Fig.2)

methods. The true trajectory is the smooth bold line. The right hand side uses the same datasets as

the left hand side, but noise neurons spiking at 100 Hz were added to each electrode. The primed panels

show decoded trajectories averaged over 100 datasets, the non-primed panels the decoded trajectories for

one particular dataset. Datasets consist of N = 80 exactly cosine neurons randomly assigned to J = 40

electrodes. (A) Traditional approach; firing rates and velocity predictions are obtained from NSTs. (B)

Naive prediction; the traditional approach is applied to electrodes, as if they were neurons. (C,D) Hybrid

approach; tuning curves are fitted to the NSTs as in (A), but velocity predictions calculated from ESTs.

(C) is for ~PE and (D) for the fully recursive ~P recur
E , as per Fig.3. (E,F) Proposed approach; tuning curves

and predictions are obtained from ESTs. (E) is for ~PE and (F) for ~P recur
E .
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Figure 8: Boxplots of ISE ratios (RISEs) for EST compared to NST velocity predictions. Each boxplot

summarizes the distribution of 100 RISEs obtained from 100 datasets of N = 80 neurons randomly

assigned onto J = 40 electrodes. True rates are (cosine)a with a = 0.75, 1, 1.5 and 3. Fitted rates are

exp(cosine). In the low SNR case, noise neurons spiking at 100 Hz were added to all electrodes. We use

the same nomenclature as Fig.7. (Boxes B) RISE of naive prediction ~PU over traditional NST prediction
~P . (Boxes C, D) RISE of hybrid EST predictions ~PE and ~P recur

E over NST prediction ~P . The hybrid

method uses ESTs for decoding but NSTs for encoding; hence boxplots A, B, and C all use the same

tuning curves, which correspond to actual neurons. (Boxes E1-2, F1-2) RISE of EST predictions ~PE and
~P recur

E over NST prediction ~P , with noise neurons omitted or included in the EST encoding algorithm.
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Figure 9: RISEs of naive prediction ~PU (A) and EST predictions ~PE (B) and ~P recur
E (C), as functions

of the electrode to neuron ratio J/N , for 10 datasets of N neurons with true tuning curves (cosine)1.5,

randomly assigned to J electrodes. We used N = 80 and 40 and let J take values from 5 to N .

we refer to boxplots E2 and F2 when discussing the efficiencies of ~PE and ~P recur
E , which corresponds to

fitting noise neurons to all electrodes and determining numbers of neurons via AIC in the EST encoding

algorithm.

Efficiencies also depend on the bias parameters k and krecur in the calculation of ~PE and ~P recur
E . We

reproduced Fig.8 for varying values of k, krecur, N and J (not shown), from which we determined that

optimal choices were k
.
= 8− 10 and krecur = 1. Figs.7 and 8 use these values. It makes sense that the

optimal k should be larger than the optimal krecur since ~PU , on which ~PE is based, is more variable than
~P recur

E .

Now that good parameters have been established for our algorithm, we compare the various prediction

methods. The RISEs of naive predictions ~PU (boxes A) are well above one, which confirms the earlier

analytical result that failing to sort the spike trains degrades decoding efficiency. The proposed EST

predictions fare much better in the high SNR case, with average RISEs below one (boxes C, D, E2 and

F2), which suggests that efficiency can in fact be gained from avoiding spike sorting. This suggestion

does not extend to the low SNR case, since average RISEs are around one. However this result is unfair

to our method, since we ignored the noise altogether when decoding from NSTs, when it would likely be

very difficult to spike sort. Finally, comparing C to E2 and D to F2 suggests that unidentifiabilities of

neurons has no effect on efficiency, as we had already observed in Fig.7.

Our results so far have relied on datasets of N = 80 neurons randomly assigned to J = 40 electrodes. As

discussed earlier, the efficiencies of the proposed predictions depend on the proportion of single-neuron

electrodes. Fig.9 shows the RISEs of decoded trajectories for 10 datasets of N neurons with (cosine)1.5

tuning, randomly assigned to J electrodes. We used N = 80 and N = 40 and let J take values from 5

to N . Other tuning curves and values of N produced similar results. As expected from earlier analytical

results, ~PU is always inferior to ~P , except when N = J in the high SNR situation, in which case the two

are equivalent. On the other hand, ~PE and ~P recur
E are superior to ~P approximately when J/N > 25%,

which corresponds approximately to 10% or more single-neuron electrodes. This is likely to be achieve in

practice. These conclusions also apply when the ESTs are heavily contaminated by noise, although the

efficiency gain is lesser. But as mentioned earlier, spike sorting would be hard in the low SNR case, so

the RISEs reported in Fig.9 and other figures unfairly penalize the proposed approach.

We wrap up this section with thoughts on model building. Even though our analytical calculations

suggested that decoding efficiency could be gained from our paradigm, we were still surprised by the

good results in Fig.8. To investigate this further, consider a selected electrode from the simulation study.
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Figure 10: True and estimated firing rates of neurons recorded by an electrode in the simulation study.

(A) True cosine rates λ∗
i and rate induced at the electrode κ∗ = 1−

∏
(1−λ∗

i ), plotted as functions of the

12 second velocity trajectory shown in Fig.7. (B) Firing rates λ̂i fitted to the NSTs, the corresponding

rate at the electrode, κ̂ = 1 −
∏

(1 − λ̂i), and the true electrode rate, κ∗. (C) Fitted rates obtained by

the EST encoding algorithm, the corresponding fitted electrode rate, and the true electrode rate. The

proposed method provides a better fit for the electrode firing rate, given the same model for neurons

firing rates.

It records two exactly cosine neurons, with true firing rates λ∗
i , shown in Fig.10A as functions of time

along the 12 second trajectory path. The firing rate κ∗ = 1 −
∏

(1 − λ∗
i ) induced at the electrode is

overlaid in bold. Although neurons are cosine, we fitted exponential cosine tuning curves throughout

the simulation. Fig.10C shows the fits obtained by the EST encoding algorithm with noise neurons

included, the implied κ̂, and the true κ∗. The agreement between κ̂ and κ∗ is good. Fig.10B shows

the corresponding rates fitted to the NSTs and the implied electrode rate. This time the disagreement

between κ̂ and κ∗ is substantial. Fig.10B illustrates the lack of fit that can be expected from fitting an

incorrect model. Lack of fit typically causes loss of decoding efficiency. What is remarkable is that the

EST algorithm is able to alleviate discrepancies between the unknown generative model and the model we

choose to fit to the neurons, and thus improve decoding. This happens in part because the noise neurons

we fit to all electrodes make for more flexible models. This is important in real application, since we never

use the “correct” model. In the fourth panels of Fig.8, the exponential cosine model provided a better fit

to neurons with sharper tuning curves λ∗(~v) = (ki +mi~v · ~Di)
3, so that the traditional NST approach was

(almost) fully efficient. The better match between generative and decoding models also meant that noise

neurons were not crucially needed to provide flexibility in the EST encoding algorithm. In that case the

average RISEs were around one, meaning that traditional and proposed decoding paradigms were equally

efficient on average.

4 Discussion

We have proposed a novel paradigm for spike train decoding, which avoids entirely spike sorting based on

waveform information. Our approach is a paradigm, not an algorithm, since it can be used with any of

the current decoding algorithms. In this paper we focused on population vector and maximum likelihood

decoding. A forthcoming paper deals with dynamic Bayesian decoding.

Based on extensive simulations we showed that, provided that at least 10% of the electrodes are tuned to
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relevant movement variables, our paradigm is at least as efficient as traditional decoding based on well-

isolated neurons. Our approach is particularly attractive for two reasons. First, in place of the lengthy

spike sorting task of the traditional approach, it involves an exact expectation EM that is fast enough

that it could also run during decoding to capture potential slow changes in the states of the neurons.

This is particularly relevant for neural prostheses, for which speed and computing power are limiting

bottlenecks. Second, our paradigm remains efficient even when all electrodes are severely corrupted by

noise, a situation that is common with chronically implanted electrodes, and that renders traditional spike

sorting particularly difficult. In addition, our approach appears to alleviate some model mis-specifications,

which is of interest because the statistical models we use are only approximations to the true models that

generate the data.

While it is true that our paradigm avoids spike sorting based on waveforms, it does implicitly extract

neurons’ identities based on information about neuron tuning, as was revealed in Fig.4D. When used

in conjunction with spike waveforms information, the EST encoding algorithm improves spike sorting

and encoding simultaneously. These methods and results are presented in a forthcoming paper, with

applications more general than decoding. We did not consider waveforms in this paper because our

objective was to propose a full encoding/decoding paradigm that does not require them. All that is

required are the spike trains collected at recording electrodes from thresholding the bandpassed voltage

signal. Moreover, including waveform information to our current paradigm will not improve decoding,

since the efficiencies reported in Figs.7 and 8 are similar either if we use actual neurons or not.

Our encoding algorithm includes assumptions that would be hard to dispute. We assume that movements

are smooth, so that current values of movement variables contain information about the same variables

in the immediate future, and that motor neurons are broadly tuned to these variables, relying on a large

body of work starting with Georgopoulos et al. (1982). We avoid issues of model selection altogether

because they are not specific to our approach. The process of deciding how neurons encode for movement

variables would be similar with the current and proposed paradigms, and future research providing better

tuning curve models can be incorporated in our approach, as with the traditional approach. To keep the

development of ideas simple, we further assume that neurons are independent and Poisson, although this

does not affect the quality of our results. The last assumption could be dropped by using a firing rate

model that depends on the past.One option is the inhomogeneous Markov model of Kass and Ventura

(2001), which can accommodate effects such as refractory periods. The independence assumption could

also be dropped by building dependencies between neurons in the firing rates, as suggested for example by

Martignon et al. (2000), Okatan et al. (2005), and Kulkarni and Paninski (2007). Finally, we assume that

a neuron could be recorded by only one electrode. To handle electrode arrays, for which the same neuron

can be recorded by several electrodes, an option would be to include in the model a binary include/exclude

variable for each neuron on all electrodes, and let these be estimated by the EM algorithm.

27



Acknowledgments

The author was supported by NIH grants 2RO1MH064537 and 1R01EB005847.

28



References

Barbieri, R, Frank, LM, Nguyen, DP, Quirk, MC, Solo, V, Wilson, MA, and Brown, EN. (2004). Dynamic

analyses of information encoding by neural ensembles. Neural Computation, 16(2): 277–307.

Brockwell, AE, Rojas, A, and Kass, RE. (2004). Recursive Bayesian decoding of motor cortical signals

by particle filtering. Journal of Neurophysiology, 91:1899–1907.

Brockwell, AE, Kass, RE, and Schwartz, AB. (2004). Statistical Signal Processing and the Motor Cortex.

to appear.

Brown, EN, Kass, RE, and Mitra, PP. (2004). Multiple neural spike train data analysis: state-of-the-art

and future challenges. Nature Neuroscience, 7:456-461.

Brown, EN, Frank, LM, Tang, D, Quirk, MC, Wilson, MA (1998). A statistical paradigm for neural spike

train decoding applied to position prediction from ensemble firing patterns of rat hippocampal place

cells. Journal of Neuroscience, 18:7411-7425.

Carmena, JM, Lebedev, RE, Crist, JE, O’Doherty, JE, Santucci, DM, Dimitrov, DF, Patil, PG, Hen-

riquez, CS, and Nicolelis, MAL. (2003). Learning to control a brain-machine interface for reaching

and grasping by primates. PLoS Biol, 1:193–208.

Dempster, AP, Laird, NM, and Rubin, DB. (1977). Maximum likelihood from incomplete data via the

EM algorithm (with discussion). J. of the Royal Statistical Society B, 39(1):138.

Fee, MS, Mitra, PP, and Kleinfeld, D. (1996). Variability of extracellular spike waveforms of cortical

neurons. J. Neurophysiol, 76:3823–3833.

Georgopoulos, AP, Kalaska, JF, Caminiti, R, and Massey, JT. (1982). On the relations between the direc-

tion of two-dimensional arm movements and cell discharge in primate motor cortex. J. Neurosci.,

2:1527–1537.

Georgopoulos, AP, Kettner, RE, and Schwartz, AB. (1988). Primate motor cortex and free arm move-

ments to visual targets in three-dimensional space. II. coding of the direction of movement by a

neuronal population. Neuroscience, 8:2928–2937.

Georgopoulos, AP, Schwartz, AB, and Kettner, RE. (1986). Neuronal population coding of movement

direction. Science, 233:1416–1419.

Harris, KD, Henze, DA, Csicsvari, J, Hirase, H, and Buzsaki, G. (2000). Accuracy of tetrode spike sepa-

ration as determined by simultaneous intracellular and extracellular measurements. J Neurophysiol,

84:401-14.

Hochberg, LR, Serruya, MD, Friehs, GH, Mukand, JA, Saleh, M, Caplan, AH, Branner, A, Chen, D,

Penn, RD, and Donoghue, JP. (2006). Neuronal ensemble control of prosthetic deices by a human

with tetraplegia. Nature, 442:164–171.

Kass, RE and Ventura, V. (2001). A Spike-train probability model. Neural Comput. 13: 1713–1720.

Kass, RE, Ventura, V, and Brown, EN. (2005). Statistical issues in the analysis of neuronal data. J.

Neurophysiology, 94:8–25.

Kemere, C, Shenoy, KV, and Meng, TH. (2003). Model-based neural decoding of reaching movements:

A maximum likelihood approach. IEEE Trans. on Biomedical Engineering, 51:925–932.

Kulkarni, JE and Paninski, L. (2007). Common-input models for multiple neural spike-train data. Net-

work: computation in neural systems, to appear.

29



Lewicki, MS. (1998). A review of methods for spike sorting: The detection and classification of neural

action potential. Network: Comput. Neural Syst., 9:R53–R78, 1998.

Martignon, L, Deco, G, Laskey, K, Diamond, M, Freiwald, W, and Vaadia, E. (2000) Neural Coding:

Higher-Order Temporal Patterns in the Neurostatistics of Cell Assemblies. Neural Comput. 12:

2621-265.

McCullagh, P and Nelder, JA. (1999). Generalized Linear Models. Chapman and Hall, second edition.

Moran, DW and Schwartz, AB. (1999). Motor Cortical Representation of Speed and Direction During

Reaching. J Neurophysiol, 82: 2676-2692.

Musallam, S, Corneil, BD, Greger, B, Scherberger, H, and Andersen, RA. (2004). Cognitive control

signals for neural prosthetics. Science, 305:258–262.

Neal, RM, and Hinton, GE. (1999). A View of the EM Algorithm that Justifies Incremental, Sparse, and

Other Variants. Learning in Graphical Models. Michael Jordan, editor. Kluwer Academic.

Okatan, M, Wilson, MA, and Brown, EN. (2005). Analyzing functional connectivity using a network

likelihood model of ensemble neural spiking activity. Neural Computation, 17:1927–1961.

Pouzat, C, Delescluse, M, Voit, P, and Diebolt, J. (2004). Improved spike-sorting by modeling firing

statistics and burst-dependent spike amplitude attenuation: a Markov chain Monte Carlo approach.

J Neurophysiol, 91(6):2910-2928.

Salinas, E, and Abbott, LF. (1994). Vector reconstruction from firing rates. Journal of Computational

Neuroscience, 1:89–107.

Sanger, TD. (1996). Probability density estimation for the interpretation of neural population codes. J.

Neurophysiology, 76(4):2790–2793.

Santhanam, G, Ryu, SI, Yu, BM, Afshar, A, and Shenoy, KV. (2006). A high-performance brain-computer

interface. Nature, 442:195–198.

Schwartz, AB. (2004). Cortical neural prosthetics. Annual Review of Neuroscience, 27:487–507.

Shoham, S, Fellows, MP, and Normann, RA. (2003). Robust, automatic spike sorting using mixtures of

multivariate distributions. J. Neurosci. Methods, 127:111-122.

Shoham, S, Paninski, LM, Fellows, MR, Hatsopoulos, NG, Donoghue, JP, and Normann, RA. (2005).

Statistical encoding model for a primary motor cortical brain-machine interface. IEEE Trans. on

Biomedical Engineering, 52(7):1312–1322.

Taylor, DM, Helms Tillery, SI, and Schwartz, AB. (2002). Direct cortical control of 3D neuroprosthetic

devices. Science, 296:1829–1832.

Truccolo, W, Eden, UT, Fellos, MR, Donoghue, JP, and Brown, EN. (2005). A point process framework

for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects.

J. Neurophysiology, 91:1074–1089.

Wessberg, J, Stambaugh, CR, Kralik, JD, Beck, PD, Lauback, M, Chaplin, JK, Kim, J, Biggs, SJ,

Srinivasan, MA, and Nicolelis, MAL. (2000). Real-time prediction of hand trajectory by ensembles

of cortical neurons in primates. Nature, 408(6810):361–365.

Wu, W., Shaikhouni, A, Donoghue, JP, and Black, MJ. (2004). Closed-loop neural control of cursor

motion using a kalman filter. Proc. IEEE Engineering in Medicine and Biology Society, 4126–4129.

Zhang, K, Ginzburg, I, McNaughton, BL, and Sejnowski, TJ. (1998). Interpretating neuronal population

activity by reconstruction: Unified framework with applications to hippocampal place cells. Journal

of Neurophysiology, 79:1017–1044.

30



Appendices

4.1 Efficiencies of proposed and traditional PV predictions

E(~PE) = E

(
N∑

i=1

ei
~Di

)
=

N∑

i=1

E(ei) ~Di E is a linear operator

=

N∑

i=1

E(zji
)

λi(~v)

κji
(~v)

~Di by definition of ei in Eq.25

=

N∑

i=1


∑

j∈Iji

E(yj)


 λi(~v)

κji
(~v)

~Di by definition of zji
in Eq.32

=
N∑

i=1


∑

j∈Iji

λj(~v)


 λi(~v)

κji
(~v)

~Di yj has mean λj(~v) by definition

=

N∑

i=1

λi(~v) ~Di by definition of κji
(~v) in Eq.31.

Similarly, E(~P ) = E
(∑N

i=1 yi
~Di

)
=
∑N

i=1 E(yi) ~Di =
∑N

i=1 λi(~v) ~Di.

Predictions ~P and ~PE are two-dimensional, so we calculate their variance covariance matrices to assess

their variabilities. Considering the x-coordinate of ~P we have

Var(Px) = Var

(
N∑

i=1

yi Dix

)

=

N∑

i=1

Var(yi Dix) (since yi ⊥ yj)

=

N∑

i=1

Var(yi) D2
ix =

N∑

i=1

σ2
i D2

ix,

where σ2
i is the variance of spike count yi. If we assumed yi to be Poisson, then we would have σ2

i = λi(~v).

Similarly for the y-coordinate we have

Var(Py) =

N∑

i=1

σ2
i D2

iy.
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Finally the covariance between Px and Py is

Cov(Px, Py) = Cov




N∑

i=1

yi Dix,

N∑

j=1

yj Djy




=

N∑

i=1

Cov(yi Dix, (yi Diy) (since yi ⊥ yj)

=

N∑

i=1

σ2
i DixDiy.

Note that if the PDs are uniformly distributed and if σi is approximately the same for all neurons,

Cov(Px, Py)
.
= 0.

To deal with Var ( ~PE), we first rewrite ~PE as

~PE =

N∑

i=1

ei
~Di =

N∑

i=1

zji

λi(~v)

κji
(~v)

~Di =

J∑

j=1

zj

∑

i∈Ij

λi(~v)

κji
(~v)

~Di,

by switching the summation over the neurons by the summation over the electrodes. Because the zi’s are

independent (the ei’s were not), Var ( ~PE) is now more easily tractable. Specifically, for the x-coordinate

Var(PEx) =

J∑

j=1

Var(zj)


∑

i∈Ij

λi

κji

Dix




2

=

J∑

j=1


∑

i∈Ij

Var(yi)




∑

i∈Ij

λi

κji

Dix




2

=

J∑

j=1


∑

i∈Ij

σ2
i




∑

i∈Ij

λi

κji

Dix




2

,

and similarly

Var(PEy) =

J∑

j=1



∑

i∈Ij

σ2
i





∑

i∈Ij

λi

κji

Diy




2

,

while

Cov(PEx, PEy) =
J∑

j=1



∑

i∈Ij

σ2
i





∑

i∈Ij

λi

κji

Dix





∑

i∈Ij

λi

κji

Diy


 .

The variance-covariance matrices of ~P and ~PE cannot be compared without imposing any constraint on

σ2
i = Var(yi). It is not too restrictive to assume that Var (yi) = α λi(~v), α ∈ R+, which is to say that the

variance of spike counts is proportional to their means. This happens, for example, when spike counts

are over or under dispersed Poisson random variables; the case α = 1 corresponds to Poisson spike trains.

Under this assumption,

Var(PEx) = α

J∑

j=1




(∑
i∈Ij

λi Dix

)2

∑
i∈Ij

λi



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and

Var(Px) = α

N∑

i=1

λi D2
ix = α

J∑

j=1



∑

i∈Ij

λi D2
ix


 .

Both Var(Px) and Var(PEx) are summations of positive quantities over the electrodes. Applying Cauchy-

Schwartz inequality yields 
∑

i∈Ij

λiDix




2

≤


∑

i∈Ij

λi




∑

i∈Ij

λiD
2
ix


 ,

for j = 1, . . . , J , which in turn implies

Var-Cov(~PE) ≤ Var-Cov(~P ),

where the inequality applies to all elements of the matrices.

4.2 Decoding efficiency degrades if we use electrodes in place of well isolated

neurons

We offer a movement prediction perspective to explain why decoding from isolated neurons might be

better than decoding from electrodes. Assume that an electrode records the two neurons with firing rates

in Fig.11A; Fig.11B shows the rate κ(~v) induced by these neurons at the electrode. We plotted the rates

in spike counts per 30 msec bins, and assumed that ~v had constant magnitude, with direction varying

in [0, 2π]. Spike counts vary about their expectations, which is represented by dotted lines 2σi on each

side of λi(~v). Without loss of generality we used σi =
√

λi(~v), consistent with Poisson counts. Assume

now that z = 12 spikes are detected at the electrode in a time bin, depicted by the horizontal line in

Fig.11B. The relationship between spike counts and tuning curves implies that velocities that could have

produced such a count are approximately between 0.44 and 5.17 radians. On the other hand, if we know

that neuron 1 spiked y1 = 10 times and neuron 2 y2 = 2 times, we obtain from Fig.11A that the velocity

is between 0.37 and 3.4 for neuron 1, and between 0 and 2.46 or between 5.02 and 2π based on neuron

2. Combining the two sources of information places the velocity between 2.46 and 3.4 approximately, a

more accurate prediction than that based on the electrode.
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Figure 11: (A) Tuning curves λi(~v) of two neurons. (B) Tuning curve of the electrode κ(~v) = 1− (1 −

λ1(~v))(1−λ2(~v)). Spike counts vary about their expectations, represented by dotted lines 2σi = 2
√

λi(~v)

on each side of λi(~v). (B) Assume that at time t, z = 12 spikes are recorded from the electrode, depicted

by the horizontal line in (B); the relationship between spike counts and tuning curves implies that the

velocity is between 0.44 and 5.17 radians, the interval marked by a thick line at the a-axis in (B). If we

knew that neuron 1 spiked y1 = 10 times and neuron 2 spiked y2 = 2 times, we would infer that the

velocity was between 0.37 and 3.4 based on neuron 1, and between 0 and 2.46 or between 5.02 and 2π

based on neuron 2; these intervals are marked by thick lines in the x-axes in (A). Combining the two

sources of information would place the velocity at the intersection of these intervals, which is between

2.46 and 3.4 radians, a more accurate prediction than that based on the electrode spike count in (B).
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